






Doom Emacs Documentation

A compilation of resources for Doom Emacs users

      latest

      

 Top


	1. Introduction
	1.1. Frequently asked questions
	1.2. Following project development
	1.3. Where else to find help
	1.3.1. TODO The Emacs community






	2. TODO Release Notes
	3. User manual
	3.1. TODO Introduction
	3.1.1. TODO Why Emacs?
	3.1.1.1. Why not Emacs?



	3.1.2. TODO Why Doom?
	3.1.2.1. Why not Doom?



	3.1.3. TODO Ways to use Doom



	3.2. TODO Quickstart
	3.3. TODO Install
	3.3.1. TODO Emacs & Dependencies
	3.3.1.1. TODO MacOS
	TODO With Homebrew
	TODO With MacPorts



	3.3.1.2. TODO Windows
	With WSL2 + Ubuntu
	With a precompiled binary + Git Bash
	With chocolatey / scoop



	3.3.1.3. TODO Linux
	TODO Ubuntu
	TODO Fedora
	TODO Arch Linux
	TODO Void Linux
	TODO NixOS
	TODO Guix
	TODO openSUSE
	TODO Gentoo






	3.3.2. TODO Doom Emacs
	3.3.2.1. TODO Quick install
	3.3.2.2. TODO Manual install
	3.3.2.3. TODO Alongside another config
	TODO With doom run
	TODO With Chemacs v2
	TODO With Chemacs v1






	3.3.3. TODO Module dependencies



	3.4. TODO Update
	3.4.1. TODO Rollback
	3.4.2. TODO Best practices



	3.5. TODO Concepts
	3.5.1. TODO Emacs terminology
	3.5.1.1. User interface
	Buffers
	Echo area
	Frame
	Fringe
	Header line
	Margins
	Minibuffer
	Mode line
	Window



	3.5.1.2. Editing
	Kill
	Major mode
	Mark
	Minor mode
	Point
	Region
	Yank



	3.5.1.3. Emacs Lisp
	Alist
	Command vs Function
	Doc string



	3.5.1.4. Keybinds
	Universal (prefix) argument
	Prefix key






	3.5.2. TODO Keybind notation
	3.5.3. TODO Special keys
	3.5.3.1. TODO The <help> prefix
	3.5.3.2. Leader / localleader keys



	3.5.4. Doom-specific
	3.5.4.1. TODO Doom modules
	3.5.4.2. TODO $EMACSDIR
	3.5.4.3. TODO $DOOMDIR
	3.5.4.4. TODO Envvar file
	3.5.4.5. bin/doom (Doom’s CLI)



	3.5.5. Unix
	3.5.5.1. $HOME
	3.5.5.2. $PATH
	3.5.5.3. $SHELL
	3.5.5.4. Dotfiles






	3.6. TODO Environment
	3.7. TODO Configure
	3.7.1. TODO Toggling modules
	3.7.2. TODO Package management
	3.7.2.1. TODO Installing packages
	3.7.2.2. TODO Changing an existing recipe
	3.7.2.3. TODO Package pinning
	3.7.2.4. TODO Disabling packages
	3.7.2.5. TODO Registering local packages
	3.7.2.6. TODO Recipe specifications



	3.7.3. TODO Reconfiguring packages
	3.7.4. TODO Major modes
	3.7.5. TODO Color themes
	3.7.5.1. Installing a third party theme
	3.7.5.2. Themes and color schemes



	3.7.6. TODO Fonts
	3.7.7. TODO (Re)Binding keys
	3.7.7.1. Changing your leader keys
	3.7.7.2. Binding new keys under the leader prefix
	3.7.7.3. Binding new leader prefixes



	3.7.8. TODO Code formatting
	3.7.9. TODO User interface
	3.7.9.1. TODO Popup windows
	3.7.9.2. TODO Line numbers



	3.7.10. TODO Keyboard layout
	3.7.11. TODO Dashboard
	3.7.12. TODO File/directory-local variables
	3.7.13. TODO Turning Emacs into an IDE
	3.7.14. TODO Reloading your config
	3.7.15. TODO Common mistakes



	3.8. TODO Troubleshoot
	3.8.1. TODO The *Messages* buffer
	3.8.2. TODO Debug mode
	3.8.3. TODO Hard crashes
	3.8.4. TODO Freezing and hangs
	3.8.5. TODO Dealing with errors
	3.8.5.1. TODO Producing a backtrace
	3.8.5.2. TODO Startup failures
	3.8.5.3. TODO CLI failures
	3.8.5.4. TODO Package failures
	3.8.5.5. TODO Common error messages



	3.8.6. TODO Testing in Doom’s sandbox
	3.8.6.1. TODO Generating a minimal test case



	3.8.7. TODO Bisecting your private config
	3.8.8. TODO Bisecting Doom Emacs






	4. Migrating
	4.1. Introduction
	4.2. TODO From vanilla
	4.2.1. Comparison
	4.2.2. Gotchas



	4.3. TODO From Spacemacs
	4.3.1. Comparison
	4.3.2. Gotchas



	4.4. TODO From (Neo)Vim
	4.4.1. Comparison
	4.4.2. Gotchas



	4.5. TODO From VSCode
	4.5.1. Comparison
	4.5.2. Gotchas






	5. Tutorials
	5.1. TODO Discovery
	5.1.1. Keybinds
	5.1.1.1. Which-key
	5.1.1.2. Describe bindings



	5.1.2. Modules
	5.1.3. Commands
	5.1.4. Packages



	5.2. TODO Navigating
	5.2.1. Cursor motions
	5.2.2. Window manipulation
	5.2.3. Opening files
	5.2.4. Switching buffers
	5.2.5. Bookmarks



	5.3. TODO Editing
	5.3.1. Copy/Paste
	5.3.2. Text manipulation
	5.3.3. Resize fonts on-the-fly
	5.3.4. Region selection
	5.3.5. Narrowing
	5.3.6. Replacing text
	5.3.7. Replacing text in multiple files
	5.3.8. Commenting
	5.3.9. Deleting, renaming, or moving files
	5.3.10. Keyboard macros
	5.3.11. Scratch buffer
	5.3.12. Reformatting
	5.3.13. Expandable snippets



	5.4. TODO Searching
	5.4.1. Search in current buffer
	5.4.2. Search multiple files
	5.4.3. Search online
	5.4.4. Look up in dictionary/thesaurus
	5.4.5. Look up documentation



	5.5. TODO Projects
	5.6. TODO Programming
	5.6.1. LSP and servers
	5.6.2. Jump to definition/references
	5.6.3. Compiling
	5.6.4. Executing code on-the-fly
	5.6.5. REPLs
	5.6.6. Code completion
	5.6.7. Debugger



	5.7. TODO Org
	5.8. TODO Magit
	5.9. TODO Emacs server
	5.10. TODO External tools
	5.10.1. EditorConfig
	5.10.2. Environment managers (conda, virtualenv, direnv, etc)
	5.10.3. NixOS



	5.11. TODO Workspaces



	6. Developer manual
	6.1. TODO Introduction
	6.2. TODO Releases
	6.2.1. The process



	6.3. TODO Conventions
	6.3.1. TODO Documentation
	6.3.1.1. Notice for HTML readers
	6.3.1.2. Formatting
	Special tags
	Notices
	Syntax



	6.3.1.3. TODO Changelogs
	6.3.1.4. TODO Modules
	TODO Description
	TODO Prerequisites
	TODO Usage
	TODO Troubleshooting






	6.3.2. TODO Emacs lisp
	6.3.2.1. TODO Style guide
	6.3.2.2. Naming conventions
	Lisp conventions
	Doom conventions






	6.3.3. TODO Git branches
	6.3.4. Git commits
	6.3.4.1. Types
	bump
	dev
	docs
	feat
	fix
	merge
	module
	nit
	perf
	refactor
	release
	revert
	test
	tweak
	Breaking changes



	6.3.4.2. Scope
	6.3.4.3. Summary
	6.3.4.4. Body
	6.3.4.5. Footer



	6.3.5. TODO Keybinds
	6.3.5.1. TODO Modifiers
	6.3.5.2. TODO Leader
	6.3.5.3. TODO Localleader
	6.3.5.4. TODO Evil
	6.3.5.5. TODO Vanilla






	6.4. TODO Forking
	6.5. TODO Modules
	6.5.1. Introduction
	6.5.1.1. Concepts
	6.5.1.2. Module notation
	6.5.1.3. Load order
	6.5.1.4. Conventions



	6.5.2. TODO Anatomy of a module
	6.5.2.1. TODO README.org
	6.5.2.2. TODO init.el
	6.5.2.3. TODO config.el
	6.5.2.4. TODO packages.el
	6.5.2.5. TODO cli.el
	6.5.2.6. TODO doctor.el
	6.5.2.7. TODO autoload.el
	6.5.2.8. TODO autoload/
	6.5.2.9. TODO test/
	6.5.2.10. TODO patches/
	6.5.2.11. TODO Other files



	6.5.3. TODO Doom Emacs loading process
	6.5.4. TODO Examples
	6.5.5. TODO Best practices



	6.6. TODO Command line interface
	6.7. TODO CI/CD
	6.7.1. TODO Workflows
	6.7.1.1. TODO Testing
	6.7.1.2. TODO Linting commits
	6.7.1.3. TODO Bumping packages
	6.7.1.4. TODO Building docs



	6.7.2. TODO Possible improvements






	7. Modules
	7.1. :app
	7.1.1. calendar
	7.1.2. emms
	7.1.3. everywhere
	7.1.4. irc
	7.1.5. rss
	7.1.6. twitter



	7.2. :checkers
	7.2.1. grammar
	7.2.2. spell
	7.2.3. syntax



	7.3. :completion
	7.3.1. company
	7.3.2. helm
	7.3.3. ido
	7.3.4. ivy
	7.3.5. vertico



	7.4. :config
	7.4.1. default
	7.4.2. literate



	7.5. :editor
	7.5.1. evil
	7.5.2. file-templates
	7.5.3. fold
	7.5.4. format
	7.5.5. god
	7.5.6. lispy
	7.5.7. multiple-cursors
	7.5.8. objed
	7.5.9. parinfer
	7.5.10. rotate-text
	7.5.11. snippets
	7.5.12. word-wrap



	7.6. :emacs
	7.6.1. dired
	7.6.2. electric
	7.6.3. ibuffer
	7.6.4. tramp
	7.6.5. undo
	7.6.6. vc



	7.7. :email
	7.7.1. mu4e
	7.7.2. notmuch
	7.7.3. wanderlust



	7.8. :input
	7.8.1. chinese
	7.8.2. japanese
	7.8.3. layout



	7.9. :lang
	7.9.1. agda
	7.9.2. beancount
	7.9.3. cc
	7.9.4. clojure
	7.9.5. common-lisp
	7.9.6. coq
	7.9.7. crystal
	7.9.8. csharp
	7.9.9. dart
	7.9.10. data
	7.9.11. dhall
	7.9.12. elixir
	7.9.13. elm
	7.9.14. emacs-lisp
	7.9.15. erlang
	7.9.16. ess
	7.9.17. factor
	7.9.18. faust
	7.9.19. fsharp
	7.9.20. fstar
	7.9.21. gdscript
	7.9.22. go
	7.9.23. haskell
	7.9.24. hy
	7.9.25. idris
	7.9.26. java
	7.9.27. javascript
	7.9.28. json
	7.9.29. julia
	7.9.30. kotlin
	7.9.31. latex
	7.9.32. lean
	7.9.33. ledger
	7.9.34. lua
	7.9.35. markdown
	7.9.36. nim
	7.9.37. nix
	7.9.38. ocaml
	7.9.39. org
	7.9.40. php
	7.9.41. plantuml
	7.9.42. purescript
	7.9.43. python
	7.9.44. qt
	7.9.45. racket
	7.9.46. raku
	7.9.47. rest
	7.9.48. rst
	7.9.49. ruby
	7.9.50. rust
	7.9.51. scala
	7.9.52. scheme
	7.9.53. sh
	7.9.54. sml
	7.9.55. solidity
	7.9.56. swift
	7.9.57. terra
	7.9.58. web
	7.9.59. yaml
	7.9.60. zig



	7.10. :os
	7.10.1. macos
	7.10.2. tty



	7.11. :term
	7.11.1. eshell
	7.11.2. shell
	7.11.3. term
	7.11.4. vterm



	7.12. :tools
	7.12.1. ansible
	7.12.2. biblio
	7.12.3. debugger
	7.12.4. direnv
	7.12.5. docker
	7.12.6. editorconfig
	7.12.7. ein
	7.12.8. eval
	7.12.9. gist
	7.12.10. lookup
	7.12.11. lsp
	7.12.12. magit
	7.12.13. make
	7.12.14. pass
	7.12.15. pdf
	7.12.16. prodigy
	7.12.17. rgb
	7.12.18. taskrunner
	7.12.19. terraform
	7.12.20. tmux
	7.12.21. upload



	7.13. :ui
	7.13.1. deft
	7.13.2. doom
	7.13.3. doom-dashboard
	7.13.4. doom-quit
	7.13.5. emoji
	7.13.6. hl-todo
	7.13.7. hydra
	7.13.8. indent-guides
	7.13.9. ligatures
	7.13.10. minimap
	7.13.11. modeline
	7.13.12. nav-flash
	7.13.13. neotree
	7.13.14. ophints
	7.13.15. popup
	7.13.16. tabs
	7.13.17. treemacs
	7.13.18. unicode
	7.13.19. vc-gutter
	7.13.20. vi-tilde-fringe
	7.13.21. window-select
	7.13.22. workspaces
	7.13.23. zen






	8. Contribute
	8.1. TODO How can I help?
	8.1.1. Do not PR
	8.1.2. Do not bump



	8.2. TODO Reporting issues
	8.2.1. TODO Before you create that report
	8.2.2. TODO How to write a good bug report



	8.3. TODO Reporting outdated packages
	8.4. TODO Suggesting enhancements
	8.4.1. TODO Before you submit your suggestion
	8.4.2. TODO How to write an effective suggestion



	8.5. TODO Contributing code
	8.5.1. TODO Your first code contribution
	8.5.2. TODO Submitting pull requests
	8.5.3. TODO Contributing to Doom core
	8.5.4. TODO Contributing to an existing module
	8.5.5. TODO Contributing a new module



	8.6. TODO Contributing documentation
	8.6.1. TODO Correcting or reporting mistakes
	8.6.2. TODO Contributing to Doom’s manual
	8.6.3. TODO Contributing module documentation



	8.7. TODO Participate in the community
	8.8. TODO Become a community moderator
	8.8.1. TODO Policies
	8.8.2. TODO Triage
	8.8.3. TODO Labeling
	8.8.4. TODO Merging



	8.9. TODO Become a module maintainer
	8.10. TODO Support the project



	9. Thank you





  Made with <3 by your favorite floating tomato
  	Github
	Discourse
	Discord
	Twitter


        





	 FAQ






	 Suggest edits
	 Help








Our documentation was designed to be read within Doom Emacs (accessible with
  M-x doom/help) or online at https://docs.doomemacs.org. If viewed
  anywhere else (e.g. Github), there is no guarantee most links will work.






1. IntroductionLink to this heading 



You’ve made it to the Doom Emacs manual. You’ve probably realized the cold hard
truth by now: Emacs is hard™. Sure, Doom makes things easier, but it can’t
totally flatten that learning curve – and it also adds one of its own.




To help you along, I’ve laid out our best learning resources for using, abusing,
and confusing Doom Emacs, and plenty of guidance to get you where you’re going.
If at any time you want to know the formatting or conventions of the
documentation you’re reading, visit our help page. There’s a link to it at the
top right of every page.





Users reading our documentation inside Emacs should check out our mini tutorial.






That said, I know this is a lot to take in. If deciding where to go next is
proving difficult, here are a couple suggestions:



	Not sure if Doom is for you? Let me help you decide.
	Need a primer on installing, using, configuring, and debugging Doom? The
user manual has all the answers.
	Want a TL;DR guide to set up and use Doom? Read our quick start guide.
	Fresh off the boat from another editor/config? Migration guides ahoy!
	Hunting for new features or module documentation? Visit our module index.
	Is Emacs throwing errors or misbehaving? Our troubleshooting guide can help
(check out our FAQ and list of common issues too).
	Need somebody to talk to? Our community is full of somebodies.
	Want to follow the project’s development? See our release notes and
development resources.
	Curious about conventions and how everything works? The developer manual’s got
you fam.
	Want to contribute? You want our contributor’s manual.






1.1. Frequently asked questionsLink to this heading 



A lot of questions get tossed at our doors. Questions about using, configuring,
extending, sponsoring, or contributing to the project – and then some. The most
common ones are added to our FAQ.



	Project       – Questions about the project and its author
	How do I…     – Common questions about Doom’s use and configuration
	Common issues – Common problems and how to fix them
	Community     – About our Discourse, Discord or Github
	Contributors  – About github, PRs, issues, and contributing
	Sponsors      – For sponsors and sponsors to-be




Have a question of your own? Post them on Discourse or Discord.








1.2. Following project developmentLink to this heading 



Doom Emacs has been in active development since the project began in 2014. These
resources were created to help you track its progress, the state of the author,
and his vision for it:



	Announcements         – Where project updates are posted
	Release notes         – Where we keep our changelogs
	Github issue tracker  – Where to find open and known issues
	Development roadmap   – An outline of Doom’s development plans
	Packages under review – Packages being considered for inclusion or removal
	Upstream bugs         – Known issues with packages or programs Doom depends on
	Project discussion    – Where to discuss Doom’s development








1.3. Where else to find helpLink to this heading 



Doom Emacs has a large, active, and friendly community across several platforms.
You don’t have to use Doom (or Emacs) to be on them, but they are treated as an
extension of our documentation. If our built-in docs don’t cover something,
folks will likely direct you to one of these, either to find an existing answer
or to present the question to the community at large:



	Discourse
	
This is our official nexus for discussion, support, and announcements. It also
seconds as our community wiki; where we keep guides, tutorials, cheat sheets,
and more. There is no better place for users to track the state of the project
or ask for help.




Popular resources:


	Official guides & tutorials
	3rd-party resources
	Example user configurations
	Cheat sheets
	Community FAQs (commonly raised issues and questions)
	Discourse FAQ
	Helpful guides
	Common configuration mistakes


	Discord
	Our Discord is a less formal environment for talking shop, being social, or
engaging with @hlissner (Doom’s maintainer). Come say hi!
	Twitter
	The twitter feed is an alternative channel for announcements. If you don’t
twitter, you’re better off subbing to the Announcements section of our
Discourse.
	Matrix
	
Our matrix space is available as an (open source) alternative to Discord. It
is bridged to our Discord server and serves the same purpose.




This isn’t available yet, and won’t be until the Matrix ecosystem has
finalized support for Spaces.







Please don’t contact Henrik or moderators directly (by email or DM) for
  assistance with [Doom] Emacs. Present your issue to the community on
  Discourse or Discord instead, to avoid inundating them and to give others a
  chance to chime in.








1.3.1. TODO The Emacs communityLink to this heading 



If your issue isn’t particular to Doom, you’ll have better luck asking the
larger Emacs community instead:



	r/emacs
	r/orgmode
	Emacs on IRC
	emacs.stackexchange.com
	Emacs mailing lists
	Emacs newsgroups
	emacs-china.org
	Emacs Quora











2. TODO Release NotesLink to this heading 




Our release notes are a work in progress.





	v21.12 (next release)







3. User manualLink to this heading 



Our 0-to-100 guide for setting up, maintaining, and troubleshooting Doom Emacs.
All the absolute essentials that Doom users ought to know, all in one place,
including a soft introduction to Emacs concepts that may be alien to beginners,
especially those coming from another editor.



	Introduction – An intro the project, its goals and author.
	Quick start  – A TL;DR crash course for beginners with busy lives
	Install      – Installing Emacs, its dependencies, and Doom
	Update       – Keep Doom up-to-date (or roll back)
	Concepts     – A glossary for essential concepts and terms
	Environment  – Set up your environment so Doom can find your programs
	Configure    – Configuring Doom, binding keys, and managing plugins
	Troubleshoot – Strategies for debugging problems and issues





3.1. TODO IntroductionLink to this heading 



So what is Doom Emacs? It’s a configuration framework for GNU Emacs tailored
for experienced Emacs users, who want:



	An Emacs Lisp framework that doesn’t abstract Emacs away,
	A reproducible, shell-scriptable package manager with disaster recovery
built-in,
	The performance of a hand-rolled config or better,
	And batteries included, but only where you want them to be.
	A framework or a starter kit (what’s the difference?)




It can be a foundation for your own config (with as many – or as few –
batteries included as you like), a reference for enthusiasts building their own,
or anywhere in between.




Why was Doom written? Picture this. The year is 2014. A spry, shell-dwelling,
and melodramatic hellspawn from the frigid North lays his tired eye on his old
friend of 12 years – Vim – and for the last time. He is exhausted. He would
not wish VimScript on even the Doom slayer himself, but like any good agent of
evil he wants more power; he wants a better Vim than Vim.




So he visits every contemporary editor you can name, but their Vim plugins
disappoint him to the point of desperation.





Henrik Lissner, a Canadian/Danish devops engineer and
gamedev hobbyist. After 12 years as an avid Vim user (and a brief stint with
every contemporary editor you can name), he discovered Emacs, then Evil, and was
convinced he’d found a better Vim than Vim. Though, the Vim plugins of said
contemporary text editors had likely disappointed him to the point of
desperation, and he’d already begun wondering where his life had gone so, so
wrong.




Still, in a perilous effort to learn Emacs and Emacs Lisp, he tinkered away. The
year is 2014, and that config would later become Doom Emacs.






3.1.1. TODO Why Emacs?Link to this heading 



With the likes of VSCode, Atom, Sublime Text, IntelliJ, even Neovim clamoring
for the top spot in developer mindshare, why consider a 50-some year old Lisp
operating system from the stone age? Why embrace its anachronistic language and
ecosystem, or struggle against its coiling-into-infinity learning curve when you
could be productive on day 2 with just about any other modern editor?




There are many reasons, but it’s greatest asset is undeniably its:



	
Extensibility. Emacs shines in the hands of an experienced user who knows
exactly what they need from their tools (and is willing to build them).
Certainly, most text editors boast some degree of “programmability”, but none
of them hold a candle to:



	How much of Emacs is configurable,
	How low the barrier of entry into extending Emacs is,
	How self-documenting Emacs is,




Emacs Lisp isn’t a great language, all around, but it’s a great language for
exploratory programming and rapid iteration. It gets you from “I want to do X”
to “I’m doing X” in fewer steps than any other editor.


	
Emacs’ second greatest asset is its versatility, which is owed to the fact
that Emacs isn’t really a text editor, but a platform for plain text
applications. You’ll find folks using Emacs for much more than software
development:



	Task planning
	File management
	Terminal emulation
	Email client
	Remote server tool
	Git frontend
	Web client/server
	and more…





Emacs can be thought of as a platform to integrate all these applications into
one set of consistent keybinds and workflows – a Life IDE, if you will.
– Tecosaur [source]




	Emacs’ ecosystem is home to some amazing plugins: there is no better git
porcelain than Magit and no greater ecosystem for personal organization
(notes, todo’s, agendas, etc) than Org. They’re so fantastic, folks have tried
to port them to other editors with varying success. Still, you can’t beat the
originals.
	Emacs Lisp may not be a particularly good Lisp, but it’s an excellent (and
sane) language for rapid iteration and hacking on your editor.




Of course, there are other reasons; Emacs is FOSS, boasts wide and deep
integration with a variety of tools and languages, and has a strong ecosystem of
users and packages, but in the end, it is up to you to decide if any of these
strengths apply to you.






3.1.1.1. Why not Emacs?Link to this heading 



The previous section established some of Emacs’ strengths, but Emacs is far from
perfect. It has a number of frustrating quirks:



	Emacs Lisp is anachronistic (no namespaces, most state is global by default,
no (true) native concurrency, etc),
	Emacs is (mostly) single-threaded; when something holds things up, Emacs
freezes.
	Emacs is slow in some respects. Doom exists to mitigate some of this curse,
but you’re in for a bad time if you enable all of our most expensive features
all at once. (See “Why is Emacs/Doom slow?”; there are workarounds for many
instances of slowness).
	The contribution process for Emacs has a notoriously high barrier of entry
(arguing your way through the mailing list has burnt out some notable plugin
authors).
	When something goes wrong, Emacs’ errors can be obtuse.




Even then, if you can get over these, Emacs may not be for you if:



	You’re a complete beginner to programming, Unix, and the shell.
	You aren’t interested in (or despise the thought of) learning (Emacs) Lisp.
	You care little about configuring your editor.
	You don’t have time to read documentation.
	You hate parentheses (yes, seriously).
	You’re terrible at finding answers by yourself.
	You found Emacs by chasing trends, rather than your personal needs.
	You expect Emacs to magically reveal to you why you should use it.










3.1.2. TODO Why Doom?Link to this heading 



The previous section established Emacs’ strengths and weaknesses, so where does
Doom Emacs come in? Doom is a configuration for Emacs meant to address many of
its issues, especially those concerning performance, but why exactly should
someone use it?



	
Its package manager. Stop micromanaging your plugins and fighting Emacs’
rolling-release package manager. Doom’s is declarative, non-rolling release,
and (nominally) reproducible; which is unique on the Emacs starter-kit scene.
Don’t let upstream issues surprise you. Roll back or re-pin packages when you
don’t have the time to deal with issues. Wield precise control over your
packages.




It also integrates with command line workflows, so automate to your heart’s
content.


	
To save time. If you care about personalizing the software you use on a
daily basis, even half as much as I do, then you need professional help, but
you also know it is time consuming. Emacs out-of-the-box is a wasteland of
archaic defaults, full of plugins rife with gotchas and oddities that may or
may not be abandonware. It will be an uphill battle. Let Doom deal with all
that noise to save yourself some time.




Time you could otherwise spend attending your daughter’s dance recitals, that
baseball game your son’s team almost won last Thursday, or answering the court
summons to fight for custody of your kids.


	It’s a gentler introduction to Emacs. Emacs is hard™. Doom files down its
rougher edges.
	Emacs is slow. Doom can’t promise to resolve all Emacs’ performance
issues, but it certainly helps, and it will always be a priority.
	It can be a barebones framework. Disable all its modules and you get many of
Doom’s perks without its opinions; why go vanilla when you can have vanilla +
better defaults + a stronger elisp toolchain from the get go?




What it can do for you



	Better defaults.
	Faster baseline.
	Pre-configured modules.






3.1.2.1. Why not Doom?Link to this heading 


	You believe Doom is a barrier to learning Emacs underneath.
	You have an Emacs config that you’re happy with and don’t have the time/energy
to migrate.










3.1.3. TODO Ways to use DoomLink to this heading 


	Use it with out-of-the-box defaults.
	As a reference.
	As a barebones foundation for your own config.










3.2. TODO QuickstartLink to this heading 



You’re a busy dude[ette] and can’t be bothered with miles of documentation, so here’s the TL;DR version:



	Install Emacs.
	Install Git and Ripgrep.
	Clone doom-emacs to $HOME/.emacs.d.
	Modify $DOOMDIR/init.el and customize what modules you want enabled.
	Run $ doom install







3.3. TODO InstallLink to this heading 






3.3.1. TODO Emacs & DependenciesLink to this heading 





3.3.1.1. TODO MacOSLink to this heading 





TODO With HomebrewLink to this heading 







TODO With MacPortsLink to this heading 









3.3.1.2. TODO WindowsLink to this heading 


	Emacs is inherently slower on Windows.
	There are more steps to setting up Emacs (and Doom) on Windows.
	Windows support will always lag behind macOS/Linux support, because I (and
many of Doom’s users) don’t use Windows. That means fewer guinea p–I mean,
pioneers, willing to test Doom on Windows.




That said, Doom does have happy Windows users (using WSL or scoop/chocolatey).




Help us improve our documentation if you managed to get Doom running on Windows!






With WSL2 + UbuntuLink to this heading 







With a precompiled binary + Git BashLink to this heading 







With chocolatey / scoopLink to this heading 









3.3.1.3. TODO LinuxLink to this heading 





TODO UbuntuLink to this heading 







TODO FedoraLink to this heading 







TODO Arch LinuxLink to this heading 







TODO Void LinuxLink to this heading 







TODO NixOSLink to this heading 







TODO GuixLink to this heading 







TODO openSUSELink to this heading 







TODO GentooLink to this heading 



Everything you need is in Gentoo’s official ::gentoo repository.






TODO Emacs 27Link to this heading 


To use Emacs graphically, enable the gui USE flag. And enable the xft USE
flag to render fonts correctly (see issue #4876):


  #  ⎘

echo "app-editors/emacs gui xft" >> /etc/portage/package.use/emacs






To install the latest unmasked version compatible with Doom:


  #  ⎘

emerge '>=app-editors/emacs-27.0'







	TODO native-comp



Alternatively, to install gccemacs/native-comp, use the live ebuild for version
28.0 with the jit USE flag:




Unmask the desired ebuild by adding the following to package.accept_keywords:



=app-editors/emacs-28.0.9999 **




Add the jit USE flag to package.use:



=app-editors/emacs-28.0.9999 jit




And emerge:


  #  ⎘

emerge =app-editors/emacs-28.0.9999













TODO Other DependenciesLink to this heading 

  #  ⎘

# required
emerge '>=dev-vcs/git-2.23' '>=sys-apps/ripgrep-11.0' sys-apps/findutils
# optional
emerge '>=sys-apps/fd-7.3.0'
















3.3.2. TODO Doom EmacsLink to this heading 





3.3.2.1. TODO Quick installLink to this heading 







3.3.2.2. TODO Manual installLink to this heading 







3.3.2.3. TODO Alongside another configLink to this heading 





TODO With doom runLink to this heading 







TODO With Chemacs v2Link to this heading 







TODO With Chemacs v1Link to this heading 











3.3.3. TODO Module dependenciesLink to this heading 









3.4. TODO UpdateLink to this heading 






3.4.1. TODO RollbackLink to this heading 







3.4.2. TODO Best practicesLink to this heading 









3.5. TODO ConceptsLink to this heading 



Emacs is old. Real old. Some familiar concepts may have names that will catch
newcomers off guard.






3.5.1. TODO Emacs terminologyLink to this heading 





3.5.1.1. User interfaceLink to this heading 





BuffersLink to this heading 



A buffer is a [space in Emacs memory] containing text to be edited. Buffers
are used to hold the contents of files that are being [edited or opened]; there
may also be buffers that are not visiting files [they display other information
like Dired that shows the content of a directory]. […] Each buffer, including
the current buffer, may or may not be displayed in any windows.








Echo areaLink to this heading 



The echo area is the last line of the frame. Unless the minibuffer is active,
this is the zone that shows all the messages Emacs sends to the user





The echo area is used for displaying error messages (see Errors), for
messages made with the `message` primitive, and for echoing keystrokes. It is
not the same as the minibuffer, despite the fact that the minibuffer appears
(when active) in the same place on the screen as the echo area.










FrameLink to this heading 



What the rest of the world calls windows








FringeLink to this heading 



On graphical displays, Emacs draws fringes next to each window: thin vertical
strips down the sides which can display bitmaps indicating truncation,
continuation, horizontal scrolling, and so on.








Header lineLink to this heading 



The header line is like a modeline (extra information line about Emacs current
state), that is displayed at the top of each window instead of the bottom of
them.




Notable examples include N. Rougier displaying filename in the header line, and
LSP-mode powered context information (“breadcrumbs”)





A window can have a header line at the top, just as it can have a mode line at
the bottom. The header line feature works just like the mode line feature[…]










MarginsLink to this heading 



A buffer can have blank areas called display margins on the left and on the
right. Ordinary text never appears in these areas, but you can put things into
the display margins using the `display` property.




Margins tend to be a lot larger than fringes, as margins are at least as wide as
characters that you’d want to display there. It is almost always disabled:
relevant information can be almost always also be shown in fringes, and fringes
take way less screen real estate.








MinibufferLink to this heading 



The Minibuffer is the buffer that takes over the last line of your Emacs frame
whenever Emacs prompts you (the user) for input.





A minibuffer is a special buffer that Emacs commands use to read arguments
more complicated than the single numeric prefix argument. These arguments
include file names, buffer names, and command names (as in <kbd>M-x</kbd>). The
minibuffer is displayed on the bottom line of the frame, in the same place as
the echo area (see The Echo Area), but only while it is in use for reading an
argument.










Mode lineLink to this heading 



What vimmers know as the status line





Each Emacs window (aside from minibuffer windows) typically has a mode line at
the bottom, which displays status information about the buffer displayed in the
window. The mode line contains information about the buffer, such as its name,
associated file, depth of recursive editing, and major and minor modes.










WindowLink to this heading 



A window is an area of the screen that is used to display a buffer (see
Buffers).










3.5.1.2. EditingLink to this heading 





KillLink to this heading 



Cut (in the Cut/Copy/Paste sense)





Kill functions delete text like the deletion functions, but save it so that
the user can reinsert it by yanking . Most of these functions have ‘kill-’
in their name. […] Killed text is saved for later yanking in the kill ring.










Major modeLink to this heading 



File types/modes to vimmers/others





Major modes specialize Emacs for editing or interacting with particular kinds
of text. Each buffer has exactly one major mode at a time.










MarkLink to this heading 



The other cursor





The mark specifies a position to bound a range of text for many commands






The mark is also a buffer position like point, but it is only used to mark a
region of text in the buffer (between point and mark).








Minor modeLink to this heading 



A minor mode provides optional features that users may enable or disable
independently of the choice of major mode. Minor modes can be enabled
individually or in combination.




Most minor modes implement features that are independent of the major mode, and
can thus be used with most major modes. For example, Auto Fill mode works with
any major mode that permits text insertion.








PointLink to this heading 



Qhat everyone knows as the cursor




point corresponds to the offset in the buffer where the “cursor” is: if
point is 3, then text will be inserted at the 3rd character if you type
text.





Point is a special buffer position used by many editing commands, including
the self-inserting typed characters and text insertion functions. Other
commands move point through the text to allow editing and insertion at
different places.




Like other positions, point designates a place between two characters (or
before the first character, or after the last character), rather than a
particular character. Usually terminals display the cursor over the character
that immediately follows point; point is actually before the character on
which the cursor sits.










RegionLink to this heading 



The “region” is the active selection.





The text between point and the mark is known as the region . Various
functions operate on text delimited by point and the mark, but only those
functions specifically related to the region itself are described here.










YankLink to this heading 



Paste (contrary to vim)




The most common pitfall to avoid when coming from Vim, is that in Emacs,
yanking_ is pasting.





Yanking means inserting text from the kill ring












3.5.1.3. Emacs LispLink to this heading 





AlistLink to this heading 



An association list is one of the main datatype used in elisp. It’s a list of
key-value cons cells (essentially tuples). Its API can be found in the manual.





An association list or alist is a specially-constructed list whose elements
are cons cells. In each element, the CAR is considered a key , and the
<small>CDR</small> is considered an associated value. (In some cases, the
associated value is stored in the CAR of the CDR.) Association lists are
often used as stacks, since it is easy to add or remove associations at the
front of the list. For example,




(setq alist-of-colors '((rose . red) (lily . white) (buttercup . yellow)))




sets the variable alist-of-colors to an alist of three elements. In the first
element, rose is the key and red is the value.










Command vs FunctionLink to this heading 



…








Doc stringLink to this heading 



Short for documentation string is information that is embedded in a variable
or function. Their docstring can be read when looking up functions with C-h f or
variables with C-h v.










3.5.1.4. KeybindsLink to this heading 





Universal (prefix) argumentLink to this heading 



This is a special key you use to modify the command you invoke directly
afterwards.




For example, if you take a command called delete-stuff, bound to C-c d that
tells you it will “delete the current line, or delete the whole buffer if
prefix argument is set”; then



	C-c d will delete a line
	M-x delete-stuff RET will delete a line
	C-u C-c d will delete the whole buffer
	C-u M-x delete-stuff RET will delete the whole buffer.




The goal of universal and prefix argument is to get a slightly different
behaviour for known commands.





Doom users with evil enabled will find the universal argument on SPC u
  instead than C-u.










Prefix keyLink to this heading 



A “prefix” is a key that begins a key sequence. For instance, the key sequence
C-x C-k b]] is comprised of three distinct input events. Both C-x and C-x C-k
can be considered prefixes.




Prefix keys allow to store and move keybindings in groups. For example by
default all `LSP-mode` commands are under `SPC c l …`, but if you want to
change that prefix to `SPC L …` for all `LSP-mode` commands, it is a one
liner in your configuration; you do not have to rebind each command manually
to its new `SPC L …` variant.





A prefix key is a key sequence whose binding is a keymap. The keymap defines
what to do with key sequences that extend the prefix key. For example, C-x is
a prefix key, and it uses a keymap that is also stored in the variable
ctl-x-map. This keymap defines bindings for key sequences starting with C-x.














3.5.2. TODO Keybind notationLink to this heading 


	The Meta key
	…








3.5.3. TODO Special keysLink to this heading 





3.5.3.1. TODO The <help> prefixLink to this heading 



…








3.5.3.2. Leader / localleader keysLink to this heading 



Doom strives for a totally keyboard driven environment, but there are more
commands out there than there are keys on anyone’s keyboard, so many of them are
bound under one of two common prefixes, called the leader and local leader
keys (these terms are borrowed from Vim):



	The leader key is a global prefix under which the most common commands are
centralized. This is the keyboard analog for the menu bar and ought to be
available anywhere.
	The local leader key (or buffer/mode-local leader key) is a contextual
leader prefix. In other words, a prefix whose sub-bindings change depending on
what major mode (language) or minor modes you have active.




These two are often referred to in technical writing (and our documentation) as
<leader> and <localleader>.




In Doom Emacs, these keys can be found on different prefixes depending on
whether you have evil (our vim emulation layer) enabled or not.



	If evil is enabled:
	SPC and SPC m in any mode but insert mode, respectively.
	M-SPC and M-SPC m in insert or emacs mode. (A separate key is needed as not
to override the default behavior of SPC to insert whitespace).


	If evil is disabled: C-c and C-c l instead.





Veteran vimmers may prefer their leader keys on , or \ As with anything in
  Emacs, this can be customized.












3.5.4. Doom-specificLink to this heading 





3.5.4.1. TODO Doom modulesLink to this heading 



…








3.5.4.2. TODO $EMACSDIRLink to this heading 



…








3.5.4.3. TODO $DOOMDIRLink to this heading 



…








3.5.4.4. TODO Envvar fileLink to this heading 



…








3.5.4.5. bin/doom (Doom’s CLI)Link to this heading 



doom is your best friend. It’ll keep all your secrets (mostly because it’s a
shell script incapable of sentience and thus incapable of retaining, much less
divulging, your secrets to others).




You can run $ doom help to see what it’s capable of, but here are some commands
that you may find particularly useful:



	$ doom doctor
	Diagnose common issues in your environment and list missing
external dependencies for your enabled modules.
	$ doom sync
	Ensures that all missing packages are installed, orphaned
packages are removed, and metadata properly generated.
	$ doom install
	Install any missing packages.
	$ doom update
	Update all packages that Doom’s (enabled) modules use.
	$ doom env
	Regenerates your envvar file, which contains a snapshot of
your shell environment for Doom Emacs to load on startup. You need to run this
for changes to your shell environment to take effect.
	$ doom purge -g
	Purge orphaned packages (i.e. ones that aren’t needed
anymore) and regraft your repos.
	$ doom upgrade
	
Upgrade Doom to the latest version (then update your
packages). This is equivalent to:



  #  ⎘

$ git pull
$ doom sync
$ doom update














3.5.5. UnixLink to this heading 





3.5.5.1. $HOMELink to this heading 



…








3.5.5.2. $PATHLink to this heading 



…








3.5.5.3. $SHELLLink to this heading 



…








3.5.5.4. DotfilesLink to this heading 



…












3.6. TODO EnvironmentLink to this heading 







3.7. TODO ConfigureLink to this heading 





3.7.1. TODO Toggling modulesLink to this heading 







3.7.2. TODO Package managementLink to this heading 





3.7.2.1. TODO Installing packagesLink to this heading 







3.7.2.2. TODO Changing an existing recipeLink to this heading 







3.7.2.3. TODO Package pinningLink to this heading 







3.7.2.4. TODO Disabling packagesLink to this heading 







3.7.2.5. TODO Registering local packagesLink to this heading 







3.7.2.6. TODO Recipe specificationsLink to this heading 









3.7.3. TODO Reconfiguring packagesLink to this heading 







3.7.4. TODO Major modesLink to this heading 







3.7.5. TODO Color themesLink to this heading 



There are two ways to load a theme. Both assume the theme is installed and
available. You either set doom-theme or manually load a theme with the
load-theme function:



  #  ⎘

;;; add to $DOOMDIR/config.el
(setq doom-theme 'doom-tomorrow-night)
;; or
(load-theme 'doom-tomorrow-night t)







The only difference between the two is when the theme is loaded. Doom loads
  doom-theme later in the startup process, while calling load-theme will load
  the theme immediately. If you don’t know which to use, set doom-theme.








3.7.5.1. Installing a third party themeLink to this heading 



To install a theme from a third party plugin, say, solarized, you need only
install it, then load it:



  #  ⎘

;;; add to $DOOMDIR/packages.el
(package! solarized-theme)

;;; add to $DOOMDIR/config.el
(setq doom-theme 'solarized-dark)






Don’t forget to run $ doom sync after adding that package! statement to
ensure the package is installed.








3.7.5.2. Themes and color schemesLink to this heading 


	Themes
	
Technically, a theme is a single group of customizations (i.e.
variable settings) that are set together.




In practice, themes almost exclusively change the faces of Emacs, that means
the ways Emacs chooses fonts and colors for the text it displays.


	Faces
	what CSS devs call styles. A Face in Emacs is a style (font, size,
color etc.) applied to text in various places. If some text does not look good
to you, it means one of 2 things:

	It’s applied the wrong face (e.g. font-lock-comments-face instead of
vertical-border), so it doesn’t blend with the rest. Usually that means
there’s an issue with the package/major-mode you are currently using.
	The face it has is ill-configured (vertical-border has a bright pink
foreground) and it needs change in the theme.


	Text properties
	Each character in a buffer can have any arbitrary data attached to it, called
text properties. The most common one is the face, but you can have any
property with any value, if it pleases you. The most common way to set and use
text properties is to use overlays, but you can click the link to text
properties manual section if you want to go deeper.
	Overlays
	
Overlays are like highlighting inside a buffer, with extra features.




Like highlighting in a text, an overlay is a zone in a buffer (it has a
beginning and an end, and is attached to the buffer it was created for).




On top of that, an overlay can add arbitrary feature to that zone:


	Change the face of the text in the zone (it can add an actual highlight, or
underline the text, or make it red…)
	Add on-click/hover effects




Possible usages include:


	recognizing a color in a css file (red, #DEA901), and applying the
parsed color as a background to give a live preview
	add a spell checker that will underline a word and correct it on click
	show a diagnostic from a compilation error at the correct location and
provide a websearch on the error message with a right click


	Font Lock
	fontification/syntax highlighting










3.7.6. TODO FontsLink to this heading 



Doom exposes five (optional) variables for controlling fonts in Doom, they are:



	doom-font
	doom-variable-pitch-font
	doom-serif-font
	doom-unicode-font (the fallback font for unicode symbols that your default
font doesn’t support)
	doom-big-font (used for doom-big-font-mode)




They all accept either a font-spec, font string ("Input Mono-12"), or xlfd
font string.




e.g.


  #  ⎘

;;; Add to $DOOMDIR/config.el
(setq doom-font (font-spec :family "Input Mono Narrow" :size 12 :weight 'semi-light)
      doom-variable-pitch-font (font-spec :family "Fira Sans") ; inherits `doom-font''s :size
      doom-unicode-font (font-spec :family "Input Mono Narrow" :size 12)
      doom-big-font (font-spec :family "Fira Mono" :size 19))










3.7.7. TODO (Re)Binding keysLink to this heading 





3.7.7.1. Changing your leader keysLink to this heading 



Four variables control what prefixes Doom uses for its leader and localleader keys:



	
For Evil users:


	Variable	Default key
	doom-leader-key	SPC
	doom-localleader-key	SPC m


	
For Emacs and Insert state (evil users), and non-evil users:


	Variable	Default evil key	Default non-evil key
	doom-leader-key	M-SPC	C-c
	doom-localleader-key	M-SPC m	C-c l







When evil is disabled neither doom-leader-key and doom-localleader-key
  are used. Change doom-leader-alt-key and doom-localleader-alt-key
  instead.






For example, to change your leader keys to comma and backslash:



  #  ⎘

;;; add to $DOOMDIR/config.el
(setq doom-leader-key ","
      doom-localleader-key "\\")










3.7.7.2. Binding new keys under the leader prefixLink to this heading 



To bind additional leader keys use the map! macro and its :leader keyword:


  #  ⎘

(map! :leader 
      ;; <leader> x will invoke the dosomething command
      "x" #'dosomething
      ;; <leader> y will print "Hello world" in the minibuffer
      "y" (cmd! (message "Hello world"))
      ;; This unbinds what was previously bound to <leader> f
      "f" nil)






Local leaders keys, on the other hand, require a :map to be specified:


  #  ⎘

(map! :after python
      :map python-mode-map
      :localleader
      ;; <localleader> x will invoke the dosomething command
      "x" #'dosomething
      ...)







You’ll notice :after python in the example above. It is important that your
  keys are bound after the keymap is loaded. In this case, python-mode-map
  is defined in the python package. See (Re)Binding keys below.“










3.7.7.3. Binding new leader prefixesLink to this heading 



You cannot bind more than one localleader key due to technical imitations, but
you can bind multiple leader keys, e.g.


  #  ⎘

(setq doom-leader-key "SPC")
(map! :map override
      "C-;"   #'doom/leader        ; ctrl + ;
      "M-SPC" #'doom/leader        ; meta + space
      :n ","  #'doom/leader        ; , in normal mode
      :leader "l" #'doom/leader')  ; SPC l












3.7.8. TODO Code formattingLink to this heading 







3.7.9. TODO User interfaceLink to this heading 





3.7.9.1. TODO Popup windowsLink to this heading 



The :ui popup module tries to standardize how Emacs handles “temporary” windows.
It includes a set of default rules that tell Emacs where to open them (and how
big they should be). Check out its documentation for details on defining your
own rules, and documentation on the set-popup-rule! function with <help> f.








3.7.9.2. TODO Line numbersLink to this heading 










3.7.10. TODO Keyboard layoutLink to this heading 







3.7.11. TODO DashboardLink to this heading 







3.7.12. TODO File/directory-local variablesLink to this heading 







3.7.13. TODO Turning Emacs into an IDELink to this heading 



Doom supports LSP, but it is not enabled by default. To enable it, you must:



	Enable the :tools lsp module,
	Enable the +lsp flag for the appropriate modules you want LSP support for
(e.g. :lang python +lsp or :lang rust +lsp),
	Install one of the supported LSP servers through your package manager or
other means. That module’s documentation will tell you how to install them,
otherwise consult the server table on the lsp-mode project page.
	Run $ doom sync on the command line and restart Emacs.




Some language modules may lack LSP support (either because it hasn’t been
implemented yet or I’m not aware of it yet – let us know!). To enable LSP for
these languages, add this to $DOOMDIR/config.el:



  #  ⎘

(add-hook 'MAJOR-MODE-local-vars-hook #'lsp!)
;; Replace MAJOR-MODE. e.g. `lisp-mode-local-vars-hook'










3.7.14. TODO Reloading your configLink to this heading 



Short answer: You can, but you shouldn’t.




Long answer: Restarting Emacs is always your safest bet, but Doom provides a
few tools for experienced Emacs users to skirt around it (most of the time):



	Evaluate your changes on-the-fly with M-x +eval/region (bound to the gr
operator for evil users) or M-x eval-last-sexp (bound to C-x C-e). Changes
take effect immediately.
	
On-the-fly evaluation won’t work for all changes. e.g. Changing your doom!
block in =$DOOMDIR/init.el.




But rather than running $ doom sync and restarting Emacs, Doom provides M-x
  doom/reload for your convenience (bound to <help> r r). This runs $ doom
  sync, restarts the Doom initialization process and re-evaluates your personal
config. However, this won’t clear pre-existing state; Doom won’t unload
modules/packages that have already been loaded and it can’t anticipate
complications arising from your private config.


	You can quickly restart Emacs and restore the last session with M-x
  doom/restart-and-restore (bound to <leader> q r).








3.7.15. TODO Common mistakesLink to this heading 









3.8. TODO TroubleshootLink to this heading 





3.8.1. TODO The *Messages* bufferLink to this heading 







3.8.2. TODO Debug modeLink to this heading 







3.8.3. TODO Hard crashesLink to this heading 







3.8.4. TODO Freezing and hangsLink to this heading 







3.8.5. TODO Dealing with errorsLink to this heading 





3.8.5.1. TODO Producing a backtraceLink to this heading 



This is a test








3.8.5.2. TODO Startup failuresLink to this heading 







3.8.5.3. TODO CLI failuresLink to this heading 







3.8.5.4. TODO Package failuresLink to this heading 







3.8.5.5. TODO Common error messagesLink to this heading 


	void-function: XYZ
	…
	void-variable: XYZ
	…
	commandp: XYZ
	…
	Key sequence ... starts with non-prefix key ...
	…
	unable to find theme file for XYZ
	…
	Cannot open load file: No such file or directory, ...
	…
	Error in private config: ...
	…
	end-of-file ...
	…









3.8.6. TODO Testing in Doom’s sandboxLink to this heading 





3.8.6.1. TODO Generating a minimal test caseLink to this heading 









3.8.7. TODO Bisecting your private configLink to this heading 







3.8.8. TODO Bisecting Doom EmacsLink to this heading 











4. MigratingLink to this heading 



Fresh off the boat from another editor? Perhaps another Emacs config? If things
seem too different here, perhaps our migration guides can soothe those
transition pains.




Though, if Emacs is completely new to you, I recommend visiting the Concepts
section of our manual; it is a quick primer on basic Emacs (and Doom) concepts
that may be alien to users coming from other editors.



	From vanilla   – For users coming from a hand-rolled Emacs config
	From Spacemacs – TODO For users coming from Spacemacs
	From (Neo)Vim  – TODO For users with a Vim background
	From VSCode    – TODO For users coming straight from VSCode





4.1. IntroductionLink to this heading 



…








4.2. TODO From vanillaLink to this heading 





4.2.1. ComparisonLink to this heading 







4.2.2. GotchasLink to this heading 









4.3. TODO From SpacemacsLink to this heading 





4.3.1. ComparisonLink to this heading 



To paraphrase (and expand upon) a reddit answer to this question by @gilbertw1:



	Doom is lighter than Spacemacs. Doom starts up faster and is better
optimized, but Spacemacs has more features.
	Doom is thinner than Spacemacs. There are fewer abstractions between you and
vanilla Emacs, and what abstractions do exist are thin by design. This means
there’s less to understand and it’s easier to hack.
	Doom is much more opinionated than Spacemacs. Doom does not strive to be a
one-size-fits-all, beginner-friendly solution, nor is it configured by
consensus. It is [mostly] the work of one developer and caters to his
vim-slanted tastes. Doom’s defaults enforce very particular (albeit optional)
workflows.
	Doom lacks manpower. Bugs stick around longer, documentation is lighter and
development is at the mercy of it’s maintainer’s schedule, health and whims.
	Doom is not beginner friendly. Doom lacks a large community to constantly
improve and produce tutorials/guides for it. Spacemacs is more likely to work
right out of the box. Doom also holds your hand less. A little elisp, shell
and git-fu will go a long way to ease you into Doom.
	Doom is managed through it’s command line interface. The bin/doom script
allows you to script package management, manage your config, or utilize elisp
functionality externally, like org tangling or batch processing.
	Doom’s package manager is declarative and rolling release is opt-in. Doom
takes a little after nix, striving for as much config reproducibility as Emacs
(and git) will permit. Spacemacs uses package.el, which is only rolling
release.








4.3.2. GotchasLink to this heading 









4.4. TODO From (Neo)VimLink to this heading 





4.4.1. ComparisonLink to this heading 







4.4.2. GotchasLink to this heading 









4.5. TODO From VSCodeLink to this heading 





4.5.1. ComparisonLink to this heading 







4.5.2. GotchasLink to this heading 











5. TutorialsLink to this heading 



Now that Doom is installed, your next battle is figuring out how to use it. It’s
dangerous to go alone, take these tutorials (and check out our community for
more, afterwards):





Our tutorials are a work in progress; many of them are incomplete. Help us
  complete them.





	Discovery      – How to discover features, packages, or commands
	Navigating     – …
	Editing        – …
	Searching      – …
	Projects       – …
	Programming    – How to use Emacs as a programming IDE
	Org            – …
	Magit          – The git porcelain in Emacs
	Emacs server   – How to talk to Emacs from the command line
	External tools – How to use external tools with Doom Emacs
	Workspaces     – …





5.1. TODO DiscoveryLink to this heading 





5.1.1. KeybindsLink to this heading 





5.1.1.1. Which-keyLink to this heading 







5.1.1.2. Describe bindingsLink to this heading 









5.1.2. ModulesLink to this heading 







5.1.3. CommandsLink to this heading 







5.1.4. PackagesLink to this heading 









5.2. TODO NavigatingLink to this heading 





5.2.1. Cursor motionsLink to this heading 







5.2.2. Window manipulationLink to this heading 







5.2.3. Opening filesLink to this heading 







5.2.4. Switching buffersLink to this heading 







5.2.5. BookmarksLink to this heading 









5.3. TODO EditingLink to this heading 





5.3.1. Copy/PasteLink to this heading 







5.3.2. Text manipulationLink to this heading 







5.3.3. Resize fonts on-the-flyLink to this heading 







5.3.4. Region selectionLink to this heading 







5.3.5. NarrowingLink to this heading 







5.3.6. Replacing textLink to this heading 







5.3.7. Replacing text in multiple filesLink to this heading 







5.3.8. CommentingLink to this heading 







5.3.9. Deleting, renaming, or moving filesLink to this heading 







5.3.10. Keyboard macrosLink to this heading 







5.3.11. Scratch bufferLink to this heading 







5.3.12. ReformattingLink to this heading 







5.3.13. Expandable snippetsLink to this heading 









5.4. TODO SearchingLink to this heading 





5.4.1. Search in current bufferLink to this heading 







5.4.2. Search multiple filesLink to this heading 







5.4.3. Search onlineLink to this heading 







5.4.4. Look up in dictionary/thesaurusLink to this heading 







5.4.5. Look up documentationLink to this heading 









5.5. TODO ProjectsLink to this heading 







5.6. TODO ProgrammingLink to this heading 





5.6.1. LSP and serversLink to this heading 







5.6.2. Jump to definition/referencesLink to this heading 







5.6.3. CompilingLink to this heading 







5.6.4. Executing code on-the-flyLink to this heading 







5.6.5. REPLsLink to this heading 







5.6.6. Code completionLink to this heading 







5.6.7. DebuggerLink to this heading 









5.7. TODO OrgLink to this heading 







5.8. TODO MagitLink to this heading 







5.9. TODO Emacs serverLink to this heading 







5.10. TODO External toolsLink to this heading 





5.10.1. EditorConfigLink to this heading 







5.10.2. Environment managers (conda, virtualenv, direnv, etc)Link to this heading 







5.10.3. NixOSLink to this heading 









5.11. TODO WorkspacesLink to this heading 









6. Developer manualLink to this heading 



Interested in what twigs and glues we hold the project together with? Our
developer’s manual goes over all our conventions and includes guides to walk
hackers and contributors through our infrastructure and internal design.



	Releases        – About Doom’s versioning scheme and release schedule
	Conventions     – Doom’s code, project, docs, and keybind conventions
	Documentation – About the formatting and conventions of our documentation
	Emacs lisp    – Doom’s style guide for code and comments
	Git branches  – How Doom organizes its git repository and formats commits
	Git commits   – How Doom organizes its git repository and formats commits
	Keybinds      – …


	Forking         – How to fork Doom and maintain your own branch
	Modules         – Breaks down Doom modules and how to write them
	CLI             – How to use and extend doom for your own automation
	CI/CD           – Explaining Doom’s automated infrastructure





6.1. TODO IntroductionLink to this heading 



This documentation is designed for contributors, hackers, and users who want to
know:



	What twigs and glues hold the Doom Emacs project together (e.g. toolchains,
CI/CD, our process for releases).
	What our code, git commit, and documentation conventions are.
	How Doom’s internals are designed and why.




…








6.2. TODO ReleasesLink to this heading 



Doom Emacs follows the CalVer versioning scheme (i.e. YY.0M[.PATCH][MODIFIER])
alongside a loose monthly release schedule. This scheme was chosen because Doom
consists of many, many third party packages which may break compatibility
individually over time. SemVer is still used for Doom’s core, however.






6.2.1. The processLink to this heading 


	A release-YY.0M branch is created.
	










6.3. TODO ConventionsLink to this heading 





6.3.1. TODO DocumentationLink to this heading 



Welcome to our documentation about the documentation. Here I’ll walk you through
how best to navigate our docs and the conventions we use for them – and in such
painstaking detail that you’ll memorize it all simply to avoid the horror of
revisiting it. You’re welcome.






6.3.1.1. Notice for HTML readersLink to this heading 



Our docs are also available from within Doom Emacs. If you already know your way
around Doom, its search and navigation facilities can provide a more powerful
way to consume them. Access them with M-x doom/help (on <help> d h), if you
prefer, otherwise, read on.








6.3.1.2. FormattingLink to this heading 



Our documentation consists of a series of Org files living in the project’s
docs/* directory, and module-specific documentation in their respective
modules/*/*/README.org file. Each of these should consist of:



	A standardized navigation bar followed by a 80-character sequence of dashes
(do not insert these by hand, use $ doom make docs:menu to generate them).
The doom-cli-docs-menu and doom-cli-docs-common-menu variables control the
menu items.
	A #+TITLE. Should be capitalized as per sentence case rules.
	A #+SUBTITLE to summarize the contents of that file. It should be
capitalized as per sentence case rules. Should have no trailing punctuation.
	A #+SETUPFILE with a relative link to docs/.setupfile (automatically
generated with $ doom make docs:conform).
	No table of contents, unless you use #+STARTUP: unfold. #+STARTUP:
  content is the default (as specified in docs/.setupfile.org) which shows
only the headings, which serves as a native ToC (and a ToC is generated in the
HTML/PDF export targets).
	The contents of the file, which should never be more than 6 headings deep.






Special tagsLink to this heading 



Doom treats certain heading tags especially. They are:



	:ignore: – This heading will be hidden when doom-docs-mode is active or
when the file is exported. It will be as if the contents of that header
belonged to its parent tree.
	:unfold: – This heading will be unfolded at startup. Use this for introduction sections.
	:noorg: – This whole tree will be hidden when doom-docs-mode is active.
Use this on trees that should only be displayed in the HTML/PDF versions of
our documentation.
	:noexport: – This whole tree will be excluded during HTML/PDF export. Use
these to display content only to users reading the docs within Doom Emacs.




Doom also uses #+begin_comment ... #+end_comment blocks to hide content from
the exported versions of our docs. These lines (i.e. excluding their content)
will be hidden when doom-docs-mode is active.








NoticesLink to this heading 



Our documentation is peppered with asides, indicated by an icon. Depending on
the icon, their meaning may change, like so:





These are for “under construction” notices or contribution call-to-actions.







These are for technical details, examples, and external references that
  build on the current subject.







These are for opinions and tangents by the maintainer or a code contributor.







These are time-sensitive annotations or timestamps that are likely to change
  at some point. e.g. Deprecation notices.







These warn users of pitfalls or important rules.






Continuation lines should be indented with 3 leading characters (to align with
the first line).




The doom-snippets package (included in the :editor snippets Doom module)
provides the following triggers for creating these quickly:



	<wip (🔨)
	<tip (📌)
	<rant (💡)
	<time (🕞)
	<warn (🚧)




After typing them in an org file, press TAB.








SyntaxLink to this heading 


	Inline verbatim blocks for:
	File paths (e.g. ~/.emacs.d/init.el or $DOOMDIR/config.el)
	Technical nouns (references to [external] packages, programs, libraries,
concepts, versions, etc). e.g.
	zls is the name of an external package.
	“Please install git so you can use git” – The first git refers to
the system package, the second refers to the executable.
	Do not use this for proper product names. e.g. Windows 10 vs win10-x86.
One is a product name (which should be linked to its homepage), the other
is a technical reference to a particular build of Windows.


	Meta annotations (like DEPRECATED):
	Referring to org syntax literally. e.g. ~this would normally be a code
    block~ and this would be *bolded*.


	Inline code blocks are used for special syntax or
	~rg~ or ~doom~ – refers to shell commands.
	~M-x some-command~ – is special syntax for issuing a command in Emacs
	~+flag~ – is the syntax for a Doom module flag. However, use
[[doom-module:][+flag]] instead for references of actual Doom flags.
	~display-buffer-alist~ – is a reference to a elisp symbol.
	[[doom-package:][js2-mode]] installs ~js2-mode~ – first js2-mode refers
to an elisp package, the second is a major mode symbol.


	Complete shell commands should be prefixed with a $ (and never with sudo,
unless root access is absolutely necessary), e.g.
	~$ doom sync~
	~$ git clone https://github.com/hlissner/doom-emacs ~/.emacs.d~
	~rg~ – Not a complete command! Simply a reference to the executable.


	
The verbatim : operator should only be used to inhibit org from interpreting
org syntax (i.e. to display text verbatim):



This *has* /org/ ~syntax~ that we want displayed as-is.












6.3.1.3. TODO ChangelogsLink to this heading 








6.3.1.4. TODO ModulesLink to this heading 



If you’re here wondering what a Doom module is, check out our introduction to
the concept in the manual.




If you’re here wondering how to enable a Doom module, check out the Toggling
Modules section.




If you’re here to better understand a module’s documentation; its structure and
formatting, or something else about it, that’s what this section is all about!






TODO DescriptionLink to this heading 



A module’s description is an introduction to what the module does and provides.
It should stand on its own; with links to any relevant projects. The description
will be copied to the module index when running $ doom make module-index, so
its contents should remain concise and surface level. Depth should be reserved
for its other sections.




The most common components of the description are:



	A short summary of what it adds to Doom Emacs.
	A long summary of the features it provides (Code completion, snippets,
integration for a particular tool – they should be listed along with any key
Emacs packages that provide that functionality).
	A list of maintainers.
	A list of module flags.
	A list of plugins.
	A list of hacks.








TODO PrerequisitesLink to this heading 








TODO UsageLink to this heading 








TODO TroubleshootingLink to this heading 












6.3.2. TODO Emacs lispLink to this heading 





6.3.2.1. TODO Style guideLink to this heading 



Doom conforms to @bbatsov’s emacs-lisp style guide with the following
exceptions:



	Use mapc instead of seq-do.
	No hanging parentheses.
	We use DEPRECATED to indicate code that will eventually be removed.




In addition to our other conventions:



	Top-level use-package! and after! blocks should be separated with two
blank lines.








6.3.2.2. Naming conventionsLink to this heading 



Doom has a number of naming conventions that it uses in addition to the standard
lisp conventions. Third party packages may use their own conventions as well.






Lisp conventionsLink to this heading 



The lisp conventions are simple. Symbols follow NAMESPACE-SYMBOLNAME for
public variables/functions (e.g. bookmark-default-file or
electric-indent-mode) and NAMESPACE--SYMBOLNAME for private ones (e.g.
byte-compile--lexical-environment and yas--tables).




NAMESPACE is usually the name of the containing file or package. E.g. the
company plugin prefixes all its variables/functions with company-.








Doom conventionsLink to this heading 


	doom/NAME or +MODULE/NAME
	Denotes a public command designed to be used interactively, via M-x or a
keybinding. e.g. doom/info, +popup/other, +ivy/rg.
	doom:NAME
	A public evil operator, motion or command. e.g. +evil:align, +ivy:rg.
	doom-[-]NAME-h or +MODULE-[-]NAME-h
	A non-interactive function meant to be used (exclusively) as a hook. e.g.
+cc-fontify-constants-h, +flycheck-buffer-h.
	doom-[-]NAME-a or +MODULE-[-]NAME-a
	Functions designed to be used as advice for other functions. e.g.
doom-set-jump-a, doom--fix-broken-smie-modes-a,
+org--babel-lazy-load-library-a
	doom-[-]NAME-fn or +MODULE-[-]NAME-fn
	Indicates an strategy function. A good rule of thumb for what makes a strategy
function is: is it interchangeable? Can it be replaced with another function
with a matching signature? e.g. +lookup-dumb-jump-backend-fn,
+magit-display-buffer-fn, +workspaces-set-project-action-fn
	abc!
	
A public Doom “autodef” function or macro. An autodef should always be
defined, even if its containing module is disabled (i.e. they will not throw a
void-function error). The purpose of this is to avoid peppering module
configs with conditionals or after! blocks before using their APIs. They
should noop if their module is disabled, and should be zero-cost in the case
their module is disabled.




Autodefs usually serve to configure Doom or a module. e.g. after!,
set-company-backends!, set-evil-initial-state!














6.3.3. TODO Git branchesLink to this heading 


	develop
	Our development (i.e. nightly) branch. Development happens rapidly here; often seeing ~10 commits a day.
	main
	Our stable branch. develop is merged into main once all tests are passed.








6.3.4. Git commitsLink to this heading 



Doom has adopted its own spin-off of conventional commits:



TYPE[!][(SCOPE[,SCOPE...])]: SUMMARY

[BODY]

[FOOTER]




For example:


	…
	…
	…




As of 074b9eb0, use $ doom ci lint-commits HEAD~1 to locally lint your last
commit against these rules.






6.3.4.1. TypesLink to this heading 





bumpLink to this heading 



For updating pinned packages, including changes to code to reflect changes
upstream. Replace bump with revert when downgrading packages.



  #  ⎘

bump: [:CATEGORY [MODULE...]|PACKAGE [PACKAGE...]|*]

user/repo@a1b2c3da1b2c -> user/repo@z9y8x7wz9y8x
user/repo@a1b2c3da1b2c -> user/repo@z9y8x7wz9y8x
user/repo@a1b2c3da1b2c -> user/repo@z9y8x7wz9y8x

[BODY]

[FOOTER]










devLink to this heading 



Work on project infrastructure and development tools: build scripts, CI/CD
config files (e.g. .github/*), ignore files, etc.








docsLink to this heading 



Changes to documentation, docstrings, and help output from CLI commands (e.g.
the output of $ doom help or $ doom doctor).



	This includes user-facing changes to doctor checks.
	Use nit for code comments instead.








featLink to this heading 



For changes that introduce a new feature, a major UI/UX change, or add
integration support in production code. For example, adding magit-gitflow to the
:tools magit module introduces brand new functionality.




However, changes that are minor, or present little-to-no user-facing change,
should use the tweak type.








fixLink to this heading 



A fix for a bug or misbehavior in production code. Also applicable when updating
stale code that was missed last bump.








mergeLink to this heading 



A merge commit, merging a pull request or branch.



	Never specify a scope.
	The bang is meaningless for this type.
	The SUMMARY should only contain one or more (comma-delimited) pull request
references or a branch’s name. e.g. merge: #4129, merge: develop.








moduleLink to this heading 



These commits reflect changes to our module list. e.g. Adding, removing,
renaming, or deprecating modules.



	Don’t use this for changes within modules.
	Scope goes after the colon.




Examples:


  #  ⎘

module: add :lang zig





  #  ⎘

module: move :feature evil to :editor evil





  #  ⎘

module: move :feature vc to :emacs vc, :ui vc-gutter





  #  ⎘

module: remove :ui fill-column

With Emacs 26.x support dropped and `display-fill-column-indicator-mode'
introduced in Emacs 27.1, this module is reduced to a single line, and
so has become too trivial to warrant remaining a module.





  #  ⎘

module: deprecate :tools rgb

The module is too trivially small; it's simply one hydra, and :ui hydra
is deprecated, so this module will be next to go.










nitLink to this heading 



Nitpick changes that have no effect on the code, such as changes to whitespace,
formatting, or comments.








perfLink to this heading 



A refactor explicitly for improving startup or runtime performance.








refactorLink to this heading 



Changes to the code base that does not add a feature nor fix a bug; such as
removing redundant code, simplifying code, renaming variables, or swapping one
package for a near-enough drop-in replacement.




For example: replacing git-link with browse-at-remote is a refactor because
they do the same thing, with slightly different interfaces.








releaseLink to this heading 



Where VERSION is the new version. A commit of this type marks a version bump.
Should only be used by maintainers.








revertLink to this heading 



For reverting changes. SUBJECT should consist of:



	Doom modules or categories (reverting bumps),
	Packages (reverting bumps),
	The full unquoted subject of the reverted commit (requires a Revert HASH in
FOOTER),




If you revert another commit in a same PR, please rebase the earlier commit out
instead before it is merged.








testLink to this heading 



Changes to unit tests, but not testing infrastructure (use dev for that).








tweakLink to this heading 



For minor UX improvements or tweaks to variables and defaults with subtle or no
user-facing changes.




For example: changing the button face’s :box attribute, inserting drop-in
functionality (e.g. (setq prefix-help-command 'embark-prefix-helm-command)),
or tuning the garbage collector.








Breaking changesLink to this heading 


	Append a ! (aka bang) to the TYPE to indicate a breaking change.
	Prepend BREAKING CHANGE: to BODY, followed by an explanation of what is
broken and how to get around it.




Examples:


  #  ⎘

refactor!: remove X functionality

BREAKING CHANGE: Without X, A and B will not work. Enable Y to get
similar behavior.





  #  ⎘

fix!(zig): remove lsp support

BREAKING CHANGE: removing LSP support reduces how much Microsoft you
must ingest to write Zig, but it means no more LSP. Only workaround is
to meme on the internet, especially in obscure git convention guides
that only a handful of people will ever read.












6.3.4.2. ScopeLink to this heading 



The SCOPE should be one of the following:



	A module minus the category: nit(python), test(doom-dashboard),
dev(popup), docs(everywhere)
	A category without the module, implying it affects all modules inside:
fix(:lang), feat(:editor), …
	An arbitrary scope prefixed with &: fix(&feature), dev(&org-roam2),
feat(&org-knit). Useful for PRs and pending features.
	One of these special scopes:
	cli: when it concerns changes to Doom’s CLI: core-cli.el, core/cli/**,
or bin/**.
	lib: when it concerns changes to Doom’s core libraries: core-lib.el or
core/autoload/**.
	For docs commits, these additional scopes are available:
	The basename (no directory, no extension) of a file in docs/*.org. e.g.
for changes to docs/migrate.org -> docs(migrate): ....
docs/tutorials.org -> docs(tutorials): ....
	install (referring to our installation guide)




	One or more of the above, separated with a comma: feat(python,rust),
fix(lsp,debugger), docs(:lang,&org-roam):. However, this is discouraged.




The scope may be omitted if:


	Is a change to Doom’s global defaults, larger design decisions, or core.
	Using the bump:, revert:, release:, module:, or merge: types. Their
scope belongs in their SUBJECT.





Does your change touch many modules? Only mention the target scope(s). For
  example, a fix for :tools lsp that affects LSP implementations in other
  modules only needs to specify lsp as its scope.







Do not put issue/PR references in the commit SUBJECT. See footer below.










6.3.4.3. SummaryLink to this heading 


	Can’t be shorter than 10 characters or longer than 72 (<= 50 is ideal).
	Should be present tense and imperative voice.
	feat: add X instead of feat: added Y
	fix: replace A with B instead of fix: replaced A with B
	When TYPE is a verb, it may be used as part of the SUBJECT:
	Bad:  fix: fix TAB breaking when focus is lost
	Good: fix: TAB breaking when focus is lost




	The first word in SUBJECT should not be capitalized – unless it’s a key
reference, e.g.
	Good: fix: TAB breaks when focus is lost
	Good: fix: remove buggy code
	Bad:  feat: Add new shenanigans


	Do not quote symbol references and inline code: tweak: gc-cons-threshold = (*
  128 1024 1024)
	
Key sequences that are ambiguous in their context should be single quoted:


	Good: feat: add C-; keybind
	Good: refactor!: remove C-c C-; keybind
	Bad:  fix: make SPC s m a reality
	Good: fix: make 'SPC s m' a reality
	Bad:  fix: bind 'SPC '' to ivy-resume
	Good: fix: bind "SPC '" to ivy-resume




A single quote is preferred. Switch to double quote if ' is present in
sequence, otherwise backquote. If all three characters are present, know that
the ancient ones don’t take kindly to your summoning methods (i.e. you should
rethink your subject line).










6.3.4.4. BodyLink to this heading 



BODY is optional. There are no restrictions on tense or voice, but must be
grammatically correct and must adhere to the following:



	Standard grammar and formatting rules apply:
	Sentences are separated with one space.
	Paragraphs are not indented and separated with a blank line.


	Line width must not exceed 72 characters, except for machine-generated lines
(e.g. bump commit lines) or long URLs.
	A BREAKING CHANGE: line and explanation is required if you use a banged type
(e.g. feat!: ..., fix!: ...).
	Include user/repo@HASH -> user/repo@HASH lines in bump commits (or revert
commits where packages are “un”-bumped).
	Key sequences that are ambiguous in their context should be single quoted:
	Bad: I changed SPC s m a to...
	Good: I changed 'SPC s m a' to...
	Good: The TAB key was fixed










6.3.4.5. FooterLink to this heading 



The FOOTER consists of two sections: the references then git meta lines,
separated by a blank line.




Each reference line should be comprised of:



	A keyword followed by a single space:
	Ref: a reference for readers to consult for more information
	Fix: use for issues/commits
	Close: use for PRs
	Revert: required for revert: ... commits


	Then a single reference:
	An issue or PR reference: #123, user/repo#123,
https://git.forge.fake/repo#123
	A 12-character commit: 3bedae38dd9f, user/repo@3bedae38dd9f,
https://git.forge.fake/repo@3bedae38dd9f
	An URL to an external resource.






Examples:


  #  ⎘


Close #55
Close user/repo#952
Fix #1
Fix #25
Fix https://git.forge.fake/repo#123
Fix user/repo#84
Ref #4
Ref #5
Ref 3bedae38dd9f
Ref https://en.wikipedia.org/wiki/Git
Ref https://git.forge.fake/repo#123
Ref user/repo#25
Ref user/repo@3bedae38dd9f
Revert 3bedae38dd9f
Co-authored-by: John Doe <john@doe.com>
Signed-off-by: Jane Doe <jane.com>







Lines should be grouped by keyword, but precise order is unimportant.











6.3.5. TODO KeybindsLink to this heading 





6.3.5.1. TODO ModifiersLink to this heading 







6.3.5.2. TODO LeaderLink to this heading 







6.3.5.3. TODO LocalleaderLink to this heading 







6.3.5.4. TODO EvilLink to this heading 







6.3.5.5. TODO VanillaLink to this heading 











6.4. TODO ForkingLink to this heading 







6.5. TODO ModulesLink to this heading 



Functionality in Doom is divided into collections of code called modules (à la
Spacemacs’ layers). A module is a bundle of packages, configuration and
commands, organized into a unit that can be enabled or disabled by adding or
removing them from your doom! block in $DOOMDIR/init.el.






6.5.1. IntroductionLink to this heading 





6.5.1.1. ConceptsLink to this heading 


	features
	autoloading
	autodefs
	deferred loading
	use-package








6.5.1.2. Module notationLink to this heading 








6.5.1.3. Load orderLink to this heading 








6.5.1.4. ConventionsLink to this heading 










6.5.2. TODO Anatomy of a moduleLink to this heading 





6.5.2.1. TODO README.orgLink to this heading 



…








6.5.2.2. TODO init.elLink to this heading 



…








6.5.2.3. TODO config.elLink to this heading 



…








6.5.2.4. TODO packages.elLink to this heading 



…








6.5.2.5. TODO cli.elLink to this heading 



…








6.5.2.6. TODO doctor.elLink to this heading 



…








6.5.2.7. TODO autoload.elLink to this heading 



…








6.5.2.8. TODO autoload/Link to this heading 



…








6.5.2.9. TODO test/Link to this heading 



…








6.5.2.10. TODO patches/Link to this heading 



…








6.5.2.11. TODO Other filesLink to this heading 



…










6.5.3. TODO Doom Emacs loading processLink to this heading 



…








6.5.4. TODO ExamplesLink to this heading 



…








6.5.5. TODO Best practicesLink to this heading 



…










6.6. TODO Command line interfaceLink to this heading 







6.7. TODO CI/CDLink to this heading 


	Current stack
	CI files & directories






6.7.1. TODO WorkflowsLink to this heading 





6.7.1.1. TODO TestingLink to this heading 







6.7.1.2. TODO Linting commitsLink to this heading 







6.7.1.3. TODO Bumping packagesLink to this heading 







6.7.1.4. TODO Building docsLink to this heading 









6.7.2. TODO Possible improvementsLink to this heading 











7. ModulesLink to this heading 



Doom’s features are divided into modules; a module is a collection of packages,
configuration, and commands, organized into a unit that can be easily enabled or
disabled by adding or removing them from your doom! block in $DOOMDIR/init.el
(remember to run $ doom sync and restart Emacs after changing your doom!
block).





Looking for technical documentation on how Doom’s modules work and are
  designed? That’s in our developer’s manual.





#+endquote





7.1. :appLink to this heading 



Application modules are complex and opinionated modules that transform Emacs
toward a specific purpose. They may have additional dependencies and should be
loaded last, before :config modules.






7.1.1. calendarLink to this heading 



Watch your missed deadlines in real time





This module adds a calendar view for Emacs, with org and google calendar sync
support.








7.1.2. emmsLink to this heading 



A media player for music no one’s heard of





This module enables Emacs to be used as a music player. It uses mpd as a backend
server and mpc to update your music database.








7.1.3. everywhereLink to this heading 



*leave* Emacs!? You must be joking





This module adds system-wide popup Emacs windows for quick edits.








7.1.4. ircLink to this heading 



How neckbeards socialize





This module turns Emacs into an IRC client, capable of OS notifications.








7.1.5. rssLink to this heading 




Flags: +org






An RSS reader that Google can’t shut down





Read RSS feeds in the comfort of Emacs.








7.1.6. twitterLink to this heading 



Be superficial in plain text





Enjoy twitter from emacs.



	View various timelines side by side, e.g. user’s timeline, home, etc.
	Post new tweets
	Send direct messages
	Retweet
	Follow and un-follow users
	Favorite tweets











7.2. :checkersLink to this heading 



For modules dedicated to linting text.






7.2.1. grammarLink to this heading 



Tasing grammar mistake every you make





This module adds grammar checking to Emacs to aid your writing by combining
lang-tool and writegood-mode.








7.2.2. spellLink to this heading 




Flags: +aspell +enchant +everywhere +flyspell +hunspell






Tasing you for misspelling mispelling





This modules provides spellchecking powered by aspell, hunspell or
enchant.




Spellcheck is automatically loaded in many text-mode derivatives, which
includes org-mode, markdown-mode, the Git Commit buffer (from magit),
mu4e-compose-mode, and others.



	Spell checking and correction using aspell, hunspell or enchant.
	Ignores source code inside org or markdown files.
	Lazily spellchecking recent changes only when idle.
	Choosing suggestions using completion interfaces (ivy or helm).








7.2.3. syntaxLink to this heading 




Flags: +childframe






Tasing you for every semicolon you forget





This module provides syntax checking and error highlighting, powered by
flycheck.











7.3. :completionLink to this heading 



These modules provide interfaces and frameworks completion, including code
completion.






7.3.1. companyLink to this heading 




Flags: +childframe +tng






The ultimate code completion backend





This module provides code completion, powered by company-mode. It is required
for code completion in many of Doom’s :lang modules.















7.3.2. helmLink to this heading 




Flags: +childframe +fuzzy +icons






the *other* search engine for love and life





This module provides Helm integration for a variety of Emacs commands, as well
as a unified interface for project search and replace, powered by ripgrep.








7.3.3. idoLink to this heading 



A foil for other search engines





Interactive DO things. The completion engine that is mostly built-into Emacs.








7.3.4. ivyLink to this heading 




Flags: +childframe +fuzzy +icons +prescient






Yesterday's lightest search engine





This module provides Ivy integration for a variety of Emacs commands, as well as
a unified interface for project search and replace, powered by ripgrep.





I prefer ivy over ido for its flexibility. I prefer ivy over helm because it’s
lighter, simpler and faster in many cases.










7.3.5. verticoLink to this heading 




Flags: +icons






The search engine for life and love





This module enhances the Emacs search and completion experience, and also
provides a united interface for project search and replace, powered by ripgrep.




It does this with several modular packages focused on enhancing the built-in
completing-read interface, rather than replacing it with a parallel ecosystem
like ivy and helm do. The primary packages are:



	Vertico, which provides the vertical completion user interface
	Consult, which provides a suite of useful commands using completing-read
	Embark, which provides a set of minibuffer actions
	Marginalia, which provides annotations to completion candidates
	Orderless, which provides better filtering methods











7.4. :configLink to this heading 



Modules that configure Emacs one way or another, or focus on making it easier
for you to customize it yourself. It is best to load these last.






7.4.1. defaultLink to this heading 



Reasonable defaults for reasonable people





This module provides a set of reasonable defaults, including:



	A Spacemacs-esque keybinding scheme
	Extra Ex commands for evil-mode users
	A configuration for (almost) universally repeating searches with ; and ,








7.4.2. literateLink to this heading 



Disguise your config as documentation





This module enables support for a literate config.




A literate config consists of a $DOOMDIR/config.org. All src blocks within are
tangled $DOOMDIR/config.el, by default, when $ doom sync is executed.











7.5. :editorLink to this heading 



For modules concerned with the insertion, manipulation, and general editing of
text. Amen.






7.5.1. evilLink to this heading 




Flags: +everywhere






Come to the dark side, we have cookies





This holy module brings the vim experience to Emacs.








7.5.2. file-templatesLink to this heading 



Fill the void in your empty files





This module adds file templates for blank files, powered by yasnippet.








7.5.3. foldLink to this heading 



What you can't see won't hurt you





This module marries hideshow, vimish-fold, and outline-minor-mode to bring you
marker, indent and syntax-based code folding for as many languages as possible.








7.5.4. formatLink to this heading 




Flags: +onsave






Standardize your ugly code





This module integrates code formatters into Emacs. Here are some of the
formatters that it currently supports:





asmfmt, black, brittany, cabal-fmt, clang-format, cmake-format, dartfmt, dfmt,
dhall format, dockfmt, elm-format, emacs, fishindent, fprettify, gleam format,
gofmt, iStyle, jsonnetfmt, ktlint, latexindent, ledger-mode, lua-fmt, mix
format, nixfmt, node-cljfmt, ocp-indent, perltidy, prettier, purty, rufo,
rustfmt, scalafmt, script shfmt, snakefmt, sqlformat, styler, swiftformat, tidy










7.5.5. godLink to this heading 



IDDQD





Adds god-mode support to Doom Emacs, allowing for entering commands without
modifier keys, similar to Vim’s modality, separating command mode and insert
mode.








7.5.6. lispyLink to this heading 



Vim for lisp, for people who don't like vim





This module adds lispy key functionality in Lisp languages, including:



	Common Lisp
	Emacs Lisp
	Scheme
	Racket
	Hy
	LFE
	Clojure
	Fennel




If :editor evil is enabled, lispyville would also be activated for every mode
where lispy is active




The default key themes that are set are as follows:


  #  ⎘

'((operators normal)
  c-w
  (prettify insert)
  (atom-movement normal visual)
  slurp/barf-lispy
  additional
  additional-insert)






To change the key themes set lispyville-key-theme. Think of
lispyville-key-theme as the equivalent of parinfer-extensions. See
lispyville’s README for more info on the specific keybindings of each key theme
(starting here).








7.5.7. multiple-cursorsLink to this heading 



Make all your mistakes at the same time





This module adds a multiple cursors implementation to Emacs (two, if you use
evil) that loosely take after multi-cursors in modern editors, like Atom or
Sublime Text.








7.5.8. objedLink to this heading 




Flags: +manual






Text object editing for the innocent





This modules adds objed, a global minor-mode for navigating and manipulating
text objects. It combines the ideas of versor-mode and other editors like Vim
or Kakoune and tries to align them with regular Emacs conventions.





This module is incompatible with the :editor evil. Enabling them both will
  cause errors.






See the objed project README for information on keybinds and usage.








7.5.9. parinferLink to this heading 



For lispers that like Python more (i.e. nobody)





Parinfer is a minor mode that aids the writing of Lisp code. It automatically infers parenthesis matching and indentation alignment, keeping your code balanced and beautiful. 












The original parinfer-mode has been deprecated and superceded by
  parinfer-rust-mode, which has much better performance.










7.5.10. rotate-textLink to this heading 



The only back'n'forth nerds will ever know





This module adds text rotation; the ability to cycle through keywords or text
patterns at point. e.g. Swapping true and false.








7.5.11. snippetsLink to this heading 



My elves type so I don't have to





This module adds snippet expansions to Emacs, powered by yasnippet.








7.5.12. word-wrapLink to this heading 



Soft-wrapping with language-aware indent





This module adds a minor-mode +word-wrap-mode, which intelligently wraps long
lines in the buffer without modifying the buffer content.











7.6. :emacsLink to this heading 



Modules in this category augment and extend the built-in features of Emacs.






7.6.1. diredLink to this heading 




Flags: +icons +ranger






Making dired pretty [functional]





This module provides reasonable defaults and augmentations for dired.








7.6.2. electricLink to this heading 



Shocking keyword-based electric-indent





This module augments the built-in electric package with keyword-based
indentation (as opposed to character-based).








7.6.3. ibufferLink to this heading 




Flags: +icons






Edit me like your French buffers





This module augments the built-in ibuffer package.



	Adds project-based grouping of buffers
	Support for file-type icons
	Uses human-readable file-size








7.6.4. trampLink to this heading 



(No description)








7.6.5. undoLink to this heading 




Flags: +tree






Persistent, smarter undo for your inevitable mistakes





This module augments Emacs’ built-in undo system to be more intuitive and to
persist across Emacs sessions.








7.6.6. vcLink to this heading 



Be the difference you want to see in the fringe





This module augments Emacs builtin version control support and provides better
integration with git.











7.7. :emailLink to this heading 



Modules that turn Emacs in an email client.






7.7.1. mu4eLink to this heading 




Flags: +gmail +org






The great filter Hanson hadn't anticipated





This module makes Emacs an email client, using mu4e.



	Tidied mu4e headers view, with flags from all-the-icons.
	Consistent coloring of reply depths (across compose and gnus modes).
	Prettified mu4e:main view.
	Cooperative locking of the mu process. Another Emacs instance may request
access, or grab the lock when it’s available.
	org-msg integration with +org, which can be toggled per-message, with revamped
style and an accent color.
	Gmail integrations with the +gmail flag.
	Email notifications with mu4e-alert, and (on Linux) a customised notification
style.





I want to live in Emacs, but as we all know, living is incomplete without
  email. So I prayed to the text editor gods and they (I) answered.
  Emacs+evil’s editing combined with org-mode for writing emails? Yes
  please.




It uses mu4e to read my email, but depends on offlineimap (to sync my
email via IMAP) and mu (to index my mail into a format mu4e can
understand).










7.7.2. notmuchLink to this heading 




Flags: +afew +org






Closest Emacs will ever be to multi-threaded





This module turns Emacs into an email client using notmuch.








7.7.3. wanderlustLink to this heading 




Flags: +gmail






To boldly go where no mail has gone before






This module has no description. Write one?













7.8. :inputLink to this heading 



(No description)






7.8.1. chineseLink to this heading 



Spend your 3 hours a week in Emacs





This module adds support for traditional Chinese script by introducing two input
methods: Pinyin and Wubi.








7.8.2. japaneseLink to this heading 



Ah, a man of culture





This module adds support for Japanese script.








7.8.3. layoutLink to this heading 




Flags: +azerty +bepo






auie,ctsrnm is the superior home row





This module provides barebones support for using Doom with non-qwerty keywoard
layouts.











7.9. :langLink to this heading 



These modules specialize in integration particular languages and their
ecosystems into (Doom) Emacs.






7.9.1. agdaLink to this heading 



Types of types of types of types...





This module adds support for the agda programming language. The Emacs support
exists directly in the agda repository but not in melpa.








7.9.2. beancountLink to this heading 




Flags: +lsp






Mind the GAAP





This module adds support for Beancount to Emacs. Beancount, like ledger, lets
you manage your money in plain text.








7.9.3. ccLink to this heading 




Flags: +lsp






C > C++ == 1





This module adds support for the C-family of languages: C, C++, and Objective-C.



	Code completion (company-irony)
	eldoc support (irony-eldoc)
	Syntax-checking (flycheck-irony)
	Code navigation (rtags)
	File Templates (c-mode, c++-mode)
	Snippets (cc-mode, c-mode, c++-mode)
	Several improvements to C++11 indentation and syntax highlighting.








7.9.4. clojureLink to this heading 




Flags: +lsp






Java with a lisp





This module adds support for the Clojure(Script) language.



	Interactive development environment (cider): REPL, compilation, debugging,
running tests, definitions & documentation lookup, code completion, and much
more
	Refactoring (clj-refactor)
	Linting (clj-kondo), requires :checkers syntax
	LSP support (clojure-lsp)








7.9.5. common-lispLink to this heading 



If you've seen one lisp, you've seen them all





This module provides support for Common Lisp and the Sly development
environment. Common Lisp is not a single language but a specification, with many
competing compiler implementations. By default, Steel Bank Common Lisp (SBCL) is
assumed to be installed, but this can be configured.




Common Lisp benefits from a mature specification and rich standard library.
Thanks to its powerful REPL and debugger, it boasts an “interactive programming”
style often unseen in other languages. Compiled Common Lisp programs are trusted
to run unmodified for a long time.








7.9.6. coqLink to this heading 



Proofs as programs





This module adds coq support, powered by Proof General.



	Code completion (company-coq)
	Snippets








7.9.7. crystalLink to this heading 



Ruby at the speed of c





This modules adds crystal support.



	Syntax-checking (flycheck)
	REPL (inf-crystal)








7.9.8. csharpLink to this heading 




Flags: +dotnet +lsp +unity






Unity, .NET, and mono shenanigans





This module adds C# support to Emacs, powered by Omnisharp (directly or through
LSP).








7.9.9. dartLink to this heading 




Flags: +flutter +lsp






Paint ui and not much else





Dart is a client-optimized language by Google for fast apps on any platform. It
is fast and optimized for UI, famous for the Flutter framework, also made by
Google. Both Flutter and Dart are free and open-source.




This module wraps dart-mode, with LSP features like code completion for
.dart files, syntax highlighting, debugging, closing labels, etc.








7.9.10. dataLink to this heading 



A dumping ground for data formats





This module adds Emacs support for CSV and XML files.








7.9.11. dhallLink to this heading 



Config as code





This module adds Dhall language support to Emacs.




Dhall is a programmable configuration language that you can think of as: JSON +
functions + types + imports.








7.9.12. elixirLink to this heading 




Flags: +lsp






Erlang done right





This module provides support for Elixir programming language via alchemist or
elixir-ls.








7.9.13. elmLink to this heading 




Flags: +lsp






Care for a cup of TEA?





This module adds Elm support to Doom Emacs.








7.9.14. emacs-lispLink to this heading 



A parsel-tongue for the oldest serpent





This module extends support for Emacs Lisp in Doom Emacs.



	Macro expansion
	Go-to-definitions or references functionality
	Syntax highlighting for defined and quoted symbols
	Replaces the built-in help with the more powerful helpful
	Adds function example uses to documentation








7.9.15. erlangLink to this heading 




Flags: +lsp






An elegant language for a more civilized age





This module provides support Erlang programming language. Support for the
sourcer language server is optional.




Includes:


	Code completion (+lsp, :completion company, & :completion ivy)
	Syntax checking (:checkers syntax)








7.9.16. essLink to this heading 




Flags: +stan






73.6% of all statistics are made up





This module adds support for various statistics languages, including R, S-Plus,
SAS, Julia and Stata.








7.9.17. factorLink to this heading 



...





This module adds support to the factor programming language and its associated
fuel emacs plugin.








7.9.18. faustLink to this heading 



DSP, but you get to keep your soul





Add support to Faust language inside emacs.



	Faust code syntax highlighting and indentation
	Project-based (inter-linked Faust files)
	Build/compile with output window
	Graphic diagrams generation and visualization in the (default) browser
	Browse generated C++ code inside Emacs
	Inter-linked files/buffers :
	From “component” to Faust file
	From “include” to Faust library file


	From error to line number
	From function name to online documentation
	Fully configurable (build type/target/architecture/toolkit, keyboard
shortcuts, etc.)
	Automatic keyword completion (if Auto-Complete is installed)
	Automatic objets (functions, operators, etc.) template insertion with default
sensible values (if :editor snippets is enabled)
	Modeline indicator of the state of the code








7.9.19. fsharpLink to this heading 




Flags: +lsp






ML stands for Microsoft's Language





This module adds F# support to Doom Emacs.








7.9.20. fstarLink to this heading 



(Dependent) types and (monadic) effects and Z3





This module adds F* support, powered by fstar-mode.el.



	Syntax highlighting
	Interactively process F* files one definition at a time
	Query the running F* process to look up definitions, documentation, and
theorems








7.9.21. gdscriptLink to this heading 




Flags: +lsp






the language you waited for





This module adds support for GDScript, the scripting language of the Godot game
engine, to Doom Emacs, powered by gdscript-mode.








7.9.22. goLink to this heading 




Flags: +lsp






The hipster dialect





This module adds Go support, with optional (but recommended) LSP support via
gopls.



	Code completion (gocode)
	Documentation lookup (godoc)
	Eldoc support (go-eldoc)
	REPL (gore)
	Syntax-checking (flycheck)
	Auto-formatting on save (gofmt) (requires :editor format +onsave)
	Code navigation & refactoring (go-guru)
	File templates
	Snippets
	Generate testing code (go-gen-test)
	Code checking (flycheck-golangci-lint)








7.9.23. haskellLink to this heading 




Flags: +lsp






A language that's lazier than I am





This module adds Haskell support to Doom Emacs.








7.9.24. hyLink to this heading 



(No description)








7.9.25. idrisLink to this heading 



A language you can depend on





This module adds rudimentary Idris support to Doom Emacs.








7.9.26. javaLink to this heading 




Flags: +lsp +meghanada






The poster child for carpal tunnel syndrome





This module adds Java support to Doom Emacs, including android-mode and
groovy-mode.








7.9.27. javascriptLink to this heading 




Flags: +lsp






all(hope(abandon(ye(who(enter(here))))))





This module adds JavaScript and TypeScript support.



	Code completion (tide)
	REPL support (nodejs-repl)
	Refactoring commands (js2-refactor)
	Syntax checking (flycheck)
	Browser code injection with skewer-mode
	Coffeescript & JSX support
	Jump-to-definitions and references support (xref)








7.9.28. jsonLink to this heading 




Flags: +lsp






At least it ain't XML





This module adds JSON support to Doom Emacs.








7.9.29. juliaLink to this heading 




Flags: +lsp






A better, faster MATLAB





This module adds support for the Julia language to Doom Emacs.



	Syntax highlighting and latex symbols from julia-mode
	REPL integration from julia-repl
	Code completion and syntax checking, requires :tools lsp and +lsp








7.9.30. kotlinLink to this heading 




Flags: +lsp






A Java(Script) that doesn't depress you





This module adds Kotlin support to Doom Emacs.








7.9.31. latexLink to this heading 




Flags: +cdlatex +fold +latexmk +lsp






Writing papers in Emacs has never been so fun





Provide a helping hand when working with LaTeX documents.



	Sane defaults
	Fontification of many popular commands
	Pretty indentation of wrapped lines using the adaptive-wrap package
	Spell checking with flycheck
	Change PDF viewer to Okular or latex-preview-pane
	Bibtex editor
	Autocompletion using company-mode
	Compile your .tex code only once using LatexMk








7.9.32. leanLink to this heading 



For folks with too much to prove





This module adds support for the Lean programming language to Doom Emacs.








7.9.33. ledgerLink to this heading 



Be audit you can be





This module adds support for ledger files. Ledger is a command line double-entry
accounting system that works with simple text files holding transactions in the
following format:


  #  ⎘

2015/10/12 Exxon
    Expenses:Auto:Gas                         $10.00
    Liabilities:MasterCard                   $-10.00






This modules enables the following features:


	Syntax and indentation support for ledger files
	Add, edit, and delete transactions
	Generate reports
	Schedule transactions
	Sort transactions
	Display statistics about transactions
	Display balance up to a point








7.9.34. luaLink to this heading 




Flags: +fennel +lsp +moonscript






One-based indices? one-based indices





This module adds Lua support to Doom Emacs.



	REPL
	Love2D specific functions
	Moonscript support
	Fennel support








7.9.35. markdownLink to this heading 




Flags: +grip






Write docs for people to ignore





This module provides Markdown support for Emacs.





Markdown is a text-to-HTML conversion tool for web writers. Markdown allows you
to write using an easy-to-read, easy-to-write plain text format, then convert it
to structurally valid XHTML (or HTML).




Thus, “Markdown” is two things: (1) a plain text formatting syntax; and (2) a
software tool, written in Perl, that converts the plain text formatting to HTML.
See the Syntax page for details pertaining to Markdown’s formatting syntax. You
can try it out, right now, using the online Dingus.




The overriding design goal for Markdown’s formatting syntax is to make it as
readable as possible. The idea is that a Markdown-formatted document should be
publishable as-is, as plain text, without looking like it’s been marked up with
tags or formatting instructions. While Markdown’s syntax has been influenced by
several existing text-to-HTML filters, the single biggest source of inspiration
for Markdown’s syntax is the format of plain text email. – John Gruber










7.9.36. nimLink to this heading 



Python + lisp at the speed of C





This module adds Nim support to Doom Emacs.



	Code completion (nimsuggest + company)
	Syntax checking (nimsuggest + flycheck)
	Org babel support (ob-nim)








7.9.37. nixLink to this heading 



I hereby declare "nix geht mehr!"





This module adds support for the Nix language to Doom Emacs, along with tools
for managing Nix(OS).




Including:


	Syntax highlighting
	Completion through company and/or helm
	Nix option lookup
	Formatting (nixfmt)








7.9.38. ocamlLink to this heading 




Flags: +lsp






An objective camel





This module adds OCaml support to Doom Emacs, powered by tuareg-mode.



	Code completion, documentation look-up, code navigation and refactoring
(merlin)
	Type, documentation and function argument display on idle (merlin-eldoc)
	REPL (utop)
	Syntax-checking (merlin with flycheck-ocaml)
	Auto-indentation (ocp-indent)
	Code formatting (ocamlformat)
	Dune file format (dune)








7.9.39. orgLink to this heading 




Flags: +brain +dragndrop +gnuplot +hugo +ipython +journal +jupyter +noter +pandoc +pomodoro +present +pretty +roam +roam2






Organize your plain life in plain text





This module adds org-mode support to Doom Emacs, along with a number of
adjustments, extensions and reasonable defaults to make it more performant and
intuitive out of the box:



	A custom, centralized attachment system that stores files in one place, rather
than in the same directory as the input file(s) (only applies to attachments
from files in/under org-directory).
	Executable code blocks with support for a variety of languages and tools
(depending on what :lang modules are enabled).
	Supports an external org-capture workflow through the bin/org-capture shell
script and +org-capture/open-frame.
	A configuration for using org-mode for slide-show presentations or exporting
org files to reveal.js slideshows.
	Drag-and-drop support for images (with inline preview) and media files (drops
a file icon and a short link) (requires +dragndrop flag).
	Integration with pandoc, ipython, jupyter, reveal.js, beamer, and others
(requires flags).
	Export-to-clipboard functionality, for copying text into formatted html,
markdown or rich text to the clipboard (see +org/export-to-clipboard and
+org/export-to-clipboard-as-rich-text).





Org is a system for writing plain text notes with syntax highlighting, code
execution, task scheduling, agenda management, and many more. The whole idea is
that you can write notes and mix them with references to things like articles,
images, and example code combined with the output of that code after it is
executed.




https://www.mfoot.com/blog/2015/11/22/literate-emacs-configuration-with-org-mode/










7.9.40. phpLink to this heading 




Flags: +hack +lsp






Perl's insecure younger brother





This module adds support for PHP 5.3+ (including PHP7) to Doom Emacs.



	ctags-based code completion (company-php and phpctags)
	eldoc support (ac-php and php-extras)
	REPL (php-boris)
	Code refactoring commands (php-refactor-mode)
	Unit-test commands (phpunit)
	Support for laravel and composer projects (with project-specific snippets)
	File templates
	Snippets





PHP was the first programming language I got paid to code in, back in the
  Cretaceous period (2003). My sincerest apologies go out to all the
  programmers who inherited my earliest PHP work. I know you’re out there,
  writhing in your straitjackets.




Save a programmer today. Stop a friend from choosing PHP as their first
language.










7.9.41. plantumlLink to this heading 



Diagrams to confuse people more





This module adds plantuml support to Emacs; allowing you to generate diagrams
from plain text.








7.9.42. purescriptLink to this heading 




Flags: +lsp






Javascript, but functional





This module adds Purescript support to Doom Emacs.








7.9.43. pythonLink to this heading 




Flags: +conda +cython +lsp +poetry +pyenv +pyright






Beautiful is better than ugly





This module adds Python support to Doom Emacs.



	Syntax checking (flycheck)
	Snippets
	Run tests (nose, pytest)
	Auto-format (with black, requires :editor format)
	LSP integration (mspyls, pyls, or pyright)








7.9.44. qtLink to this heading 



The cutest GUI framework ever





This module provides language functionality for Qt specific files.



	Syntax highlighting for qml files
	Syntax highlighting for .pro and .pri files used by qmake








7.9.45. racketLink to this heading 




Flags: +lsp +xp






The DSL for DSLs





This module adds support for the Racket programming language to Doom Emacs.








7.9.46. rakuLink to this heading 



The artist formerly known as perl6





This module adds support for the Raku programming language to Doom Emacs.








7.9.47. restLink to this heading 



Emacs as a REST client





This module turns Emacs into a REST client.



	Code-completion (company-restclient)
	Code evaluation
	Imenu support for restclient-mode
	org-mode: babel support (ob-restclient)





restclient-mode is tremendously useful for automated or quick testing REST
  APIs. My workflow is to open an org-mode buffer, create a restclient
  source block and hack away. restclient-mode and company-restclient power
  this arcane wizardry.










7.9.48. rstLink to this heading 



ReST in peace





This module adds ReStructured Text support to Doom Emacs.








7.9.49. rubyLink to this heading 




Flags: +chruby +lsp +rails +rbenv +rvm






1.step {|i| p "Ruby is #{i.even? ? 'love' : 'life'}"}





This module add Ruby and optional Ruby on Rails support to Emacs.



	Code completion (robe)
	Syntax checking (flycheck)
	Jump-to-definitions (robe)
	Bundler
	Rubocop integration (flycheck)








7.9.50. rustLink to this heading 




Flags: +lsp






Fe2O3.unwrap().unwrap().unwrap().unwrap()





This module adds support for the Rust language and integration for its tools,
e.g. cargo.



	Code completion (racer or an LSP server)
	Syntax checking (flycheck)
	LSP support (for rust-analyzer and rls) (rustic)
	Snippets








7.9.51. scalaLink to this heading 




Flags: +lsp






Java, but good





This module adds scala and sbt support to Doom Emacs.




Through the power of Metals (LSP) this module offers:


	Goto Definition
	Completions
	Hover
	Paremeter Hints
	Find References
	Run/Debug
	Find Implementations
	Rename Symbol
	Code Actions
	Document Symbols
	Formatting
	Folding
	Organize Imports








7.9.52. schemeLink to this heading 




Flags: +chez +chibi +chicken +gambit +gauche +guile +kawa +mit +racket






A fully conniving family of lisps





This module provides support for the Scheme family of Lisp languages, powered by
geiser.








7.9.53. shLink to this heading 




Flags: +fish +lsp +powershell






She sells {ba,z,fi}sh shells on the C xor





This module adds support for shell scripting languages (including Powershell and
Fish script) to Doom Emacs.



	Code completion (company-shell)
	Syntax Checking (flycheck)








7.9.54. smlLink to this heading 



...





THis module adds SML (Standard ML) programming language support to Doom Emacs.








7.9.55. solidityLink to this heading 



Do you need a blockchain? No.





This module adds Solidity support to Doom Emacs.



	Syntax-checking (flycheck)
	Code completion (company-solidity)
	Gas estimation (C-c C-g)








7.9.56. swiftLink to this heading 




Flags: +lsp






We asked for emoji variables?





This module adds support for the Swift programming language to Doom Emacs.








7.9.57. terraLink to this heading 



Earth and Moon in alignment for performance.





\(No description yet\)








7.9.58. webLink to this heading 



The tubes





This module adds support for various web languages, including HTML5, CSS,
SASS/SCSS, Pug/Jade/Slim, and HAML, as well as various web frameworks, like
ReactJS, Wordpress, Jekyll, Phaser, AngularJS, Djano, and more.








7.9.59. yamlLink to this heading 




Flags: +lsp






JSON, but readable





This module provides support for the YAML file format to Doom Emacs.








7.9.60. zigLink to this heading 




Flags: +lsp






C, but simpler





This module adds Zig support, with optional (but recommended) LSP support via
zls.



	Syntax highlighting
	Syntax-checking (flycheck)
	Code completion and LSP integration (zls)











7.10. :osLink to this heading 



(No description)






7.10.1. macosLink to this heading 



Compatibility for our favorite walled garden





This module provides extra functionality for macOS.








7.10.2. ttyLink to this heading 




Flags: +osc






Make TTY Emacs suck less





This module configures Emacs for use in the terminal, by providing:



	System clipboard integration (through an external clipboard program or OSC-52
escape codes in supported terminals).
	Cursor-shape changing across evil states (requires a terminal that supports
it).
	Mouse support in the terminal.











7.11. :termLink to this heading 



What’s an operating system without a terminal? The moduels in this category
bring varying degrees of terminal emulation into Emacs.




If you can’t decide which to choose, I recommend vterm or eshell. :term vterm
offers that best terminal emulation available but requires a few extra steps to
get going. :term eshell works everywhere that Emacs runs, even Windows, and
provides a shell entirely implemented in Emacs Lisp.






7.11.1. eshellLink to this heading 



The elisp shell that works everywhere





This module provides additional features for the built-in Emacs Shell




The Emacs Shell or eshell is a shell-like command interpreter implemented in
Emacs Lisp. It is an alternative to traditional shells such as bash, zsh,
fish, etc. that is built into Emacs and entirely cross-platform.








7.11.2. shellLink to this heading 



A REPL for your shell





Provides a REPL for your shell.





shell is more REPL than terminal emulator. You can edit your command line
  like you would any ordinary text in Emacs – something you can’t do in term
  (without term-line-mode, which can be unstable) or vterm.




Due to shell’s simplicity, you’re less likely to encounter edge cases
(e.g. against your shell config), but it’s also the least capable. TUI
programs like htop or vim won’t work in shell directly, but will be
launched in a term buffer – which handles them reasonably well.










7.11.3. termLink to this heading 



It's terminal





(No description)








7.11.4. vtermLink to this heading 



As good as terminal emulation gets in Emacs





This module provides a terminal emulator powered by libvterm. It is still in
alpha and requires a component be compiled (vterm-module.so).





vterm is as good as terminal emulation gets in Emacs (at the time of
  writing) and the most performant, as it is implemented in C. However, it
  requires extra steps to set up:



	Emacs must be built with dynamic modules support,
	and vterm-module.so must be compiled, which depends on libvterm,
cmake, and libtool-bin.




vterm will try to automatically build vterm-module.so when you first open
it, but this will fail on Windows, NixOS and Guix out of the box. Install
instructions for nix/guix can be found in the :term vterm module’s
documentation. There is no way to install vterm on Windows that I’m aware of
(but perhaps with WSL?).













7.12. :toolsLink to this heading 



Modules that integration external tools into Emacs.






7.12.1. ansibleLink to this heading 



Allow silly people to focus on silly things





(No description)








7.12.2. biblioLink to this heading 



(No description)








7.12.3. debuggerLink to this heading 




Flags: +lsp






Step through code to help you add bugs





Introduces a code debugger to Emacs, powered by realgud or dap-mode (LSP).




This document will help you to configure dap-mode Native Debug(GDB/LLDB) as
there is still not enough documentation for it.








7.12.4. direnvLink to this heading 



Save (or destroy) the environment at your leisure





This module integrates direnv into Emacs.





direnv is an environment switcher for the shell. It knows how to hook into
  bash, zsh, tcsh, fish shell and elvish to load or unload environment
  variables depending on the current directory. This allows project-specific
  environment variables without cluttering the ~/.profile file.




Before each prompt, direnv checks for the existence of a “.envrc” file in
the current and parent directories. If the file exists (and is authorized),
it is loaded into a bash sub-shell and all exported variables are then
captured by direnv and then made available to the current shell.










7.12.5. dockerLink to this heading 




Flags: +lsp






Yo dawg, I heard you like OSes, so I…





This module allows you to manipulate Docker images, containers, and more from
Emacs.




Provides a major dockerfile-mode to edit Dockerfiles. Additional convenience
functions allow images to be built easily.




docker-tramp offers TRAMP support for Docker containers.








7.12.6. editorconfigLink to this heading 



Someone else can argue about tabs and spaces





This module integrates EditorConfig into Emacs, allowing users to dictate code
style on a per-project basis with an .editorconfig file (formal
specification).








7.12.7. einLink to this heading 



Tame Jupyter notebooks with emacs





Adds Jupyter notebook integration into Emacs.








7.12.8. evalLink to this heading 




Flags: +overlay






Run code, run (also, repls)





This modules adds inline code evaluation support to Emacs and a universal
interface for opening and interacting with REPLs.








7.12.9. gistLink to this heading 



A pastebin for Githubsters





Adds the ability to manage, pull from, or push to your Gists from within Emacs.








7.12.10. lookupLink to this heading 




Flags: +dictionary +docsets +offline






Navigate your labyrinthine code and docs





This module adds code navigation and documentation lookup tools to help you
quickly look up definitions, references, documentation, dictionary definitions
or synonyms.



	Jump-to-definition and find-references implementations that just work.
	Powerful xref integration for languages that support it.
	Search online providers like devdocs.io, stackoverflow, google, duckduckgo, or
youtube (duckduckgo and google have live suggestions).
	Integration with Dash.app docsets.
	Support for online (and offline) dictionaries and thesauruses.








7.12.11. lspLink to this heading 




Flags: +eglot +peek






M-x vscode





This module integrates language servers into Doom Emacs. They provide features
you’d expect from IDEs, like code completion, realtime linting, language-aware
imenu/xref integration, jump-to-definition/references support, and more.




As of this writing, this is the state of LSP support in Doom Emacs:



	Module	Major modes	Default language server
	:lang cc	c-mode, c++-mode, objc-mode	ccls, clangd
	:lang clojure	clojure-mode	clojure-lsp
	:lang csharp	csharp-mode	omnisharp
	:lang elixir	elixir-mode	elixir-ls
	:lang fsharp	fsharp-mode	Mono, .NET core
	:lang go	go-mode	go-langserver
	:lang haskell	haskell-mode	haskell-language-server
	:lang java	java-mode	lsp-java
	:lang javascript	js2-mode, rjsx-mode, typescript-mode	ts-ls, deno-ls
	:lang julia	julia-mode	LanguageServer.jl
	:lang ocaml	tuareg-mode	ocaml-language-server
	:lang php	php-mode	php-language-server
	:lang purescript	purescript-mode	purescript-language-server
	:lang python	python-mode	lsp-python-ms
	:lang ruby	ruby-mode	solargraph
	:lang rust	rust-mode	rls
	:lang scala	scala-mode	metals
	:lang sh	sh-mode	bash-language-server
	:lang swift	swift-mode	sourcekit
	:lang web	web-mode, css-mode, scss-mode, sass-mode, less-css-mode	vscode-css-languageserver-bin, vscode-html-languageserver-bin
	:lang zig	zig-mode	zls








7.12.12. magitLink to this heading 




Flags: +forge






Wield git like a wizard





This module provides Magit, an interface to the Git version control system.








7.12.13. makeLink to this heading 



The discount build system





This module adds commands for executing Makefile targets.








7.12.14. passLink to this heading 




Flags: +auth






A password manager for nerds





This module provides an Emacs interface to Pass.








7.12.15. pdfLink to this heading 



Emacs, your next PDF reader





This module improves support for reading and interacting with PDF files in
Emacs.




It uses pdf-tools, which is a replacement for the built-in doc-view-mode for
PDF files. The key difference being pages are not pre-rendered, but instead
rendered on-demand and stored in memory; a much faster approach, especially for
larger PDFs.




Displaying PDF files is just one function of pdf-tools. See its project website
for details and videos.








7.12.16. prodigyLink to this heading 



No sweatshop is complete without child processes





This module provides an interface for managing external services from within
Emacs.








7.12.17. rgbLink to this heading 



Creating color strings





Highlights color hex values and names with the color itself, and provides tools
to easily modify color values or formats.








7.12.18. taskrunnerLink to this heading 



Taskrunner for all your projects





This module integrates taskrunner into Doom Emacs, which scraps runnable tasks
from build systems like make, gradle, npm and the like.








7.12.19. terraformLink to this heading 



Infrastructure as code





This module adds support for working with Terraform files within Emacs. This
includes syntax highlighting, intelligent code completion, and the ability to
run Terraform commands directly from Emacs.








7.12.20. tmuxLink to this heading 



From one multiplexer to another





This module provides an API for talking to Tmux sessions.








7.12.21. uploadLink to this heading 



Map local directories to remotes via ssh/ftp





Uses ssh-deploy to map a local folder to a remote one.




From the ssh-deploy README:




The ssh-deploy plug-in for Emacs makes it possible to effortlessly deploy local files and directories to remote hosts via Tramp (including but not limited to SSH, SFTP, FTP). It tries to provide functions that can be easily used by custom scripts.




The idea for this plug-in was to mimic the behavior of PhpStorm deployment functionality.













7.13. :uiLink to this heading 



For modules concerned with changing Emacs’ appearance or providing interfaces
for its features, like sidebars, tabs, or fonts.






7.13.1. deftLink to this heading 



Notational velocity for Emacs





Deft is a major mode for creating, browsing, and filtering notes written in
plain text formats, such as org-mode, markdown, and LaTeX. It enables you to
quickly jot down thoughts and easily retrieve them later.








7.13.2. doomLink to this heading 



Make Doom fabulous again





This module gives Doom its signature look: powered by the doom-one theme
(loosely inspired by Atom’s One Dark theme) and solaire-mode. Includes:



	A custom folded-region indicator for hideshow.
	“Thin bar” fringe bitmaps for git-gutter-fringe.
	File-visiting buffers are slightly brighter (thanks to solaire-mode).








7.13.3. doom-dashboardLink to this heading 



Welcome to your doom





This module adds a minimalistic, Atom-inspired dashboard to Emacs.




Besides eye candy, the dashboard serves two other purposes:



	To improve Doom’s startup times (the dashboard is lighter than the scratch
buffer in many cases).
	
And to preserve the “last open directory” you were in. Occasionally, I kill
the last buffer in my project and I end up who-knows-where (in the working
directory of another buffer/project). It can take some work to find my way
back to where I was. Not with the Dashboard.




Since the dashboard cannot be killed, and it remembers the working directory
of the last open buffer, M-x find-file will work from the directory I
expect.










7.13.4. doom-quitLink to this heading 



One does not simply quit Emacs





A silly module that throws cute confirmation prompts at you when you exit Emacs,
like DOOM (the game) did. Some quotes are from the classic games, others are
random, nerdy references that no decent human being has any business
recognizing.








7.13.5. emojiLink to this heading 




Flags: +ascii +github +unicode






💩





This module gives Emacs the ability to display and insert emojis (ASCII, Github
style, or unicode styles), as well as convert certain text patterns (e.g.
:smile:) into emojis.








7.13.6. hl-todoLink to this heading 



TODO FIXME NOTE DEPRECATED HACK REVIEW





This module adds syntax highlighting for various tags in code comments, such as
TODO, FIXME, and NOTE, among others.








7.13.7. hydraLink to this heading 



Discount modality for mythological beast hunters





This module adds hydra to Doom Emacs, as well as a few custom built hydras to
start with:



	A hydra to control windows +hydra/window-nav/body.
	A hydra to control text zoom level +hydra/text-zoom/body.








7.13.8. indent-guidesLink to this heading 



Line up them indent columns





\(No description yet\)








7.13.9. ligaturesLink to this heading 




Flags: +extra






Distract folks from your code





This module enables ligatures and arbitrary symbol substitutions with
mac-auto-operator-composition-mode (on supported macOS systems) or composition
tables (harfbuzz on Emacs 28), falling back on prettify-symbols-mode
otherwise.








7.13.10. minimapLink to this heading 



A map for lost programmers





This module displays a minimap of the buffer in a sidebar, similar to the
feature found in many other editors.








7.13.11. modelineLink to this heading 




Flags: +light






Snazzy, Atom-inspired modeline, plus API





This module provides an Atom-inspired, minimalistic modeline for Doom Emacs,
powered by the doom-modeline package (where you can find screenshots).








7.13.12. nav-flashLink to this heading 



Blink after big motions





This module flashes the line around the cursor after any significant motion, to
make it easy to follow after big operations.





Tremendously helpful on large, 1600p+ or 4K displays.










7.13.13. neotreeLink to this heading 



NERDTree for evil nerds





This module brings a side panel for browsing project files, inspired by vim’s
NERDTree.





Sure, there’s dired and projectile, but sometimes I’d like a bird’s eye view
  of a project.










7.13.14. ophintsLink to this heading 



An indicator for “what did I just do?”





This module provides op-hints (operation hinting), i.e. visual feedback for
certain operations. It highlights regions of text that the last operation (like
yank) acted on.




Uses evil-goggles for evil users and volatile-highlights otherwise.








7.13.15. popupLink to this heading 




Flags: +all +defaults






Tame sudden yet inevitable temporary windows





This module provides a customizable popup window management system.




Not all windows are created equally. Some are less important. Some I want gone
once they have served their purpose, like code output or a help buffer. Others I
want to stick around, like a scratch buffer or org-capture popup.




More than that, popups ought to be the second class citizens of my editor;
spawned off to the side, discarded with the push of a button (e.g. ESC or C-g),
and easily restored if I want to see them again. Of course, this system should
clean up after itself and kill off buffers I mark as transient.








7.13.16. tabsLink to this heading 



Keep tabs on your buffers, literally





This module adds an Atom-esque tab bar to the Emacs UI.








7.13.17. treemacsLink to this heading 




Flags: +lsp






A project drawer like neotree but cooler





Treemacs is a file and project explorer similar to NeoTree or vim’s NerdTree,
but largely inspired by the Project Explorer in Eclipse. It shows the file
system outlines of your projects in a simple tree layout allowing quick
navigation and exploration, while also possessing basic file management
utilities. It includes:



	Integration with Git (when :tools magit is enabled)
	Integration with Evil (when :editor evil +everywhere is enabled)
	Workspace awareness (when :ui workspaces is enabled)








7.13.18. unicodeLink to this heading 



Extended unicode support for various languages





This module extends Doom’s ability to display non-English unicode. It is
primarily useful for non-English Emacs users, for whom Doom’s built-in unicode
support in insufficient.




This module relies on the unicode-fonts package. It tries to setup the default
emacs fontset to cover as many unicode glyphs as possible by scanning all
available glyphs from all available fonts.




When this module is enabled:


	Emacs will prefer to use the doom-unicode-font font to display non-latin
glyphs if it provides coverage for them.
	The first time you run Emacs a unicode cache will be generated – this will
take a while!
	The cache will be regenerated every time Emacs is made aware of new fonts or
you change the font configuration e.g. by modifying doom-unicode-font.
	The cache will be stored and should not be regenerated unless font-related
configuration or the versions of relevant packages changes.








7.13.19. vc-gutterLink to this heading 



Get your diff out of the gutter





This module displays a diff of the current file (against HEAD) in the fringe.
Supports Git, Svn, Hg, and Bzr.








7.13.20. vi-tilde-fringeLink to this heading 



Fringe tildes beyond EOB





Displays a tilde(~) in the left fringe to indicate an empty line, similar to Vi.








7.13.21. window-selectLink to this heading 




Flags: +numbers +switch-window






Visually switch windows





This module provides several methods for selecting windows without the use of
the mouse or spatial navigation (e.g. C-w {h,j,k,l}).




The command other-window is remapped to either switch-window or ace-window,
depending on which backend you’ve enabled. It is bound to C-x o (and C-w C-w for
evil users).




It also provides numbered windows and selection with the winum package, if
desired. Evil users can jump to window N in C-w <N> (where N is a number between
0 and 9). Non evil users have C-x w <N> instead.








7.13.22. workspacesLink to this heading 



Tab emulation, persistence, & separate workspaces





This module adds support for workspaces, powered by persp-mode, as well as a API
for manipulating them.





There are many ways to use workspaces. I spawn a workspace per task. Say I’m
  working in the main workspace, when I realize there is a bug in another part
  of my project. I open a new workspace and deal with it in there. In the
  meantime, I need to check my email, so mu4e gets its own workspace.




Once I’ve completed the task, I close the workspace and return to main.










7.13.23. zenLink to this heading 



Distraction-free mode for the eternally distracted





This module provides two minor modes that make Emacs into a more comfortable
writing or coding environment. Folks familiar with “distraction-free” or “zen”
modes from other editors – or olivetti, sublimity, and tabula-rasa (Emacs
plugins) – will feel right at home.




These modes are:


	mixed-pitch-mode
	Which renders (most) text in a variable pitch font (see
doom-variable-pitch-font). Unlike variable-pitch-mode, this will not
affect segments of text that are intended to remain in a fixed pitch font,
such as code blocks or ASCII tables.
	writeroom-mode
	Our all-in-one “zen” mode that will:
	Center the current buffer.
	Remove superfluous UI elements (like the modeline).
	Activate mixed-pitch-mode.
	Scale up the buffer’s text slightly (see +zen-text-scale).
	And make the window’s borders slightly thicker (see
+zen-window-divider-size).













8. ContributeLink to this heading 



Doom is what happens when you combine incurable madness, poor naming sense, and
a Factorio addiction. However, it is (mostly) the work of one guy, so there will
always be gaps in its documentation, bugs lurking in dusty corners, and new
features that need implementing.




If Doom has helped you, consider converting a little caffeine into a pull
request, bug report, or a helpful voice in our community. Our contributor manual
lists all the ways you can help and how to go about them, but don’t forget to
consult our do not PR and do not bump lists before you do.





8.1. TODO How can I help?Link to this heading 



Now that you have some caffeine set aside to convert into a contribution, what
do you do? Here are a few suggestions:



	Report bugs
	Suggest enhancements
	Contribute code or documentation
	Our issue tracker has many open issues.
	Our backlog has many tasks that are left undone due to lack of time and
shifting priorities; they are free to be claimed.
	Issues tagged good first issue have a lower barrier of entry and are good
for begineers.
	Issues tagged help wanted are issues I can’t tackle myself, and need outside
help to resolve.
	Our development roadmap outlines the project’s status, progress, and plans.
	Our packages under review outlines the packages being considering for
inclusion (or removal) from Doom. An approved package that isn’t being
worked on is fair game for contributors.
	Our upstream bugs board lists known issues with external causes. Help us
address these at the source.


	Helping out in the community
	Helping out with issue triage
	As a module maintainer
	Answering questions on Discord/Discourse
	Or just being around


	Supporting the project




That said, before you contribute, please consult our Do not PR and Do not bump
lists below (and often; they change from time to time).






8.1.1. Do not PRLink to this heading 




Last updated 2021-10-16






There are contributions that will be immediately refused, either due to project
policy or an external factor blocking development. A list of these is maintained
here and is likely to change from time to time. Consult it each time you
prepare to file a pull request.



	Feature-gate keybinds in the :config default module. That is to say, PRs to
wrap keybinds in (:when (featurep! ...) ...) checks will not be accepted. I
explain why in this issue.
	Directly modify modules/index.org: this file is automatically generated by
doom make module-index and should not be modified by hand.
	Add questions to docs/faq.org without prior approval. Selecting questions
for the FAQ requires the insight of our maintainer and community leaders.
Please discuss it with them beforehand.
	
Correct less than 5 non-technical spelling and grammar errors. These are
popular, especially during Hacktoberfest, but their value don’t justify the
time cost of reviewing them all so a minimum of 5 errors is required to be
accepted. Otherwise, we’d prefer you ping us on Discord or simply wait until
it is discovered by a maintainer (or a user with enough errors to correct).




Of course, any correction that impacts the technical correctness of our
documentation is exempt from this rule. e.g. Misspelling the name of a package
in a shell command.










8.1.2. Do not bumpLink to this heading 




Last updated 2021-10-16






These are packages whose pins should not be updated:



	format-all: a rewrite of the :editor format module is in the works and updates
upstream have introduced breaking changes to the package that are incompatible
with our module (and go again our design goals for the module).










8.2. TODO Reporting issuesLink to this heading 



You’ve found a problem and you’re ready to fire off that bug report. Our
Troubleshooting guide can help you figure it out, but if that doesn’t pan out,
then it is time to file a bug report.





Please do not file or answer Doom Emacs issues on Reddit, Twitter, or
  StackOverflow. Kindly refer them to this section.




Questions posted on other platforms are difficult to track, difficult for
posterity to find, and rarely include enough information to investigate.








8.2.1. TODO Before you create that reportLink to this heading 



An effective bug report is informative. Please try to provide:



	A backtrace of all mentioned errors.
	A step-by-step reproduction of the issue.
	Information about your Doom config and system environment.
	Screenshots/casts of the issue (if possible).




This section will show you how to collect this information.








8.2.2. TODO How to write a good bug reportLink to this heading 










8.3. TODO Reporting outdated packagesLink to this heading 



Doom pins all its packages to reduce the likelihood of upstream breakage leaking
into Doom Emacs. However, we may miss when a package releases hotfixes for
critical issues. Let us know or PR a bump to our pinned packages.








8.4. TODO Suggesting enhancementsLink to this heading 





8.4.1. TODO Before you submit your suggestionLink to this heading 







8.4.2. TODO How to write an effective suggestionLink to this heading 










8.5. TODO Contributing codeLink to this heading 



There’s much to be done around here! We need bugfixes, new features, and
documentation. If you’d like to convert some caffeine into Emacs Lisp, here are
a few considerations before starting that PR:



	Make sure your contribution isn’t in our Do Not PR list
	Read our code style guide and conventions.





There are contributions that will be immediately refused, either due to
  project policy or an external factor blocking development in that area. A
  list of these kinds of contributions is maintained in two separate lists we
  call our do-not-PR lists.




They are: one below, which lists our do-not-PRs motivated by project policy,
and one on our Discourse, which are blocked by external factors.








8.5.1. TODO Your first code contributionLink to this heading 








8.5.2. TODO Submitting pull requestsLink to this heading 



…


	Now you wait for a code review:
	If your PR is approved, you don’t need to do anything. It will be merged
soon (the maintainer approves PRs ahead of time, then merges them in bulk
later).
	Your PR may acquire one of these labels:
	status:needs-work: I’m interested in your PR, but it needs some changes
to be accepted. Keep in mind there may be a delay between getting this
tag and getting an explanation for it.
	status:moved: the PR won’t be merged because it will be addressed
elsewhere, in another PR or a future commit.




	The PR is either merged or closed.








8.5.3. TODO Contributing to Doom coreLink to this heading 








8.5.4. TODO Contributing to an existing moduleLink to this heading 








8.5.5. TODO Contributing a new moduleLink to this heading 










8.6. TODO Contributing documentationLink to this heading 



Doom Emacs’ documentation is an ongoing effort. If you have suggestions,
improvements, tutorials and/or articles to submit, don’t hesitate to get in
contact via our Discord server or email. I appreciate any help I can get!






8.6.1. TODO Correcting or reporting mistakesLink to this heading 



…








8.6.2. TODO Contributing to Doom’s manualLink to this heading 



…








8.6.3. TODO Contributing module documentationLink to this heading 



…










8.7. TODO Participate in the communityLink to this heading 



…








8.8. TODO Become a community moderatorLink to this heading 



…






8.8.1. TODO PoliciesLink to this heading 







8.8.2. TODO TriageLink to this heading 







8.8.3. TODO LabelingLink to this heading 







8.8.4. TODO MergingLink to this heading 



For collaborators with PR merge permissions have three options when merging
commits on the Github UI: a conventional merging, squashing, or rebasing. When
do you do which?



	If a PR has one commit:
	Squash it if the commit message needs correcting.
	Rebase it otherwise.


	If a PR has multiple commits:
	Squash it if extra commits are corrective and/or add no value to the PR’s
git history.
	Merge it conventionally otherwise (don’t forget to substitute s/^Merge
    /merge: /).


	If the PR has merge conflicts, ask OP to rebase or redo their PR.










8.9. TODO Become a module maintainerLink to this heading 



…








8.10. TODO Support the projectLink to this heading 



Consider becoming a Github Sponsor (there are perks!) or buying
@hlissner a drink on LiberaPay or Paypal. Every little bit helps Henrik allocate
more time to Doom, Emacs, and his open-source capers.









9. Thank youLink to this heading 



In the beginning Doom was just some dude’s Emacs config, then a wild userbase
appeared. Little of this would be possible (or nearly as fun) without Emacs, its
ecosystem of plugin developers, and you, its users. Thank you!











Check out our achievements page nifty contributor and sponsor stats!







